Materials & Processing for Si Compatibility

Charles T. Sullivan ctsulli@sandia.gov, 505/844-9254 Center for Compound Semiconductor Science and Technology Microsystem Science, Technology and Components Center

Shawn Lin and Jim Fleming

Introductory overview Photonic Bandgap Materials

Optical Interconnects for High Performance Computing Workshop Oak Ridge 11/8-9/99

Possible Options for On-Chip Waveguide Interconnects

Hard dielectric waveguides

- low-loss optical fiber compatibility
 - » low index contrast $\Delta N \sim 0.005$
 - » α = 0.1 dB/cm to < 0.01 dB/cm
 - $\ast\,$ e.g., LPCVD-based buried BPSG/TEOS
- higher-index for higher-density routing
 - » high index contrast $\Delta N > 0.1$
 - » α < 0.1 dB/cm ?
 - » e.g., LPCVD-based SiON/TEOS

Polymeric waveguides

- low-temperature post-processing
 - » low index contrast $\Delta N \sim 0.05$ -0.005
 - » α ~ 0.1 dB/cm to 0.5 dB/cm, depending on λ
 - » e.g., fluorinated acrylates or polyimides

Possible Applications of PBG Materials

1) Passive devices

- Infrared Mirrors
- Thermal Emissivity Modification
- Prisms - Optical Communications
- Cavities
 - Spectroscopy
 - Military and Optical Communications
- Waveguides
 - 90° bends possible in three dimensions

2) Active devices

- Ultra-Fast Switches
- Si Infrared LED's
- Si Infrared Lasers

3) Integrated devices

- Photonic circuits

Bandstop is Largely Independent of Angle

Simulated Electric Field Patterns for 90-degree Waveguide Bend

2D Square Lattice

3D Square Lattice

90-degree Waveguide Bend at Millimeter-Wave Frequencies

The Microfabrication Challenge

3D Silicon Photonic Crystal at Mid-IR Frequencies

Mold Process Flow

The Simple Cubic Structure Fabricated Using the Mold Process

Fillet Flow Process

) Deposit SiN (first layer only), poly with layer thickness (2200Å) and SiN hard mask (500Å). Deposit 5000Å oxide sacrifical layer.

6) Etch SiN in hot phosphoric acid.

 Pattern oxide with lines and spaces, 6500Å lines, 6500Å space. Etch oxide in HF, remove ~900Å isotropically.

7) Use fillet as a mask for poly etch.

3) Deposit 1800Å polysilicon fillet layer

8) Fill spaces between lines with oxide.

4) Form fillet using anisotropic RIE.

CMP, stopping on the SiN.

5 Remove sacrifical oxide in HF.

1.5µm Bandgap Fillet Structure

Novel Structures Under Investigation

Singlemode 3D Defect Cavity

