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We are numerically solving (finite differences) in ——

the time domain, the full-wave, vector Maxwell's /h
equations with linear and nonlinear materials models: I\
multi-dimensional NL-FDTD method EM Lab

e Can model arbitrary source fields; e.g., Gaussian
beams with specified waists and incidence angles

e Can model transverse power flows, nonlinear couplings,
back reflections, and polarization effects

e Can include detailed material models:
nonresonant (phenomonological) or
resonant (two-level) effects

e Can model realistic devices and systems
- complex structures and their couplings

e Can model single cycle or multiple cycle pulses to
establish differences in their behaviors

l The NL-FDTD method is very versatile '




The electromagnetic field properties of the
basic VCSEL structure were studied
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We are numerically solving in a self-consistent
manner the full-wave vector Maxwell's equations
and several materials models
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l Multi-dimensional NL-FDTD Method l
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The PBG enhanced VCSELs can be designed
to outperform electromagnetically
the basic oxide-layer model

e Oxide layers negatively effect the
output beam patterns

e Lenses can be incorporated naturally

e Qutput beam patterns are significantly improved
with PBG enhancements

e Lower energy output in the side directions
decreases potential mutual coupling
between radiating elements

e PBG output couplers can produce a flatter wave
front

e PBG output coupler can be designed to match
VCSEL to a waveguiding structure
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Several PBG waveguide structures for integrated optics
applications have been characterized with FDTD Simulations

* FDTD simulator provides a versatile approach to modeling
complex PBG structures

* Dielectric input and output waveguides are coupled to
triangular PBGs constructed from dielectric and

metallic posts

* Defect waveguides formed in the PBG structures are used
to construct Y-power splitters

* Control defects are introduced to switch the flow of light

* Reconfigurable PBG splitters and switches may be realizable



Dielectric input and output waveguides are coupled to
triangular PBGs constructed from dielectric and metallic posts |

* Structure first driven with ultrafast (6 cycle)
pulse to obtain the broadband response

* FFTs of E and H time signals at specified locations
lead to the frequency domain spectrums of
the input and output powers

* High performance frequencies are identified
* Structure then driven with many cycles at the

“optimum” frequencies to obtain the
corresponding narrowband responses



The reflection and transmission properties of the
PBG defect structure are obtained with a FDTD
simulation driven by a broadband pulse
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The PBG defect structure provides a useful
waveguiding enviroment

PBG defect waveguide
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Electric field distribution
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FDTD simulator provides a versatile approach to modeling

complex PBG structures
l Waveguide

Scattered
field region
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Triangular PBGs were used to achieve a
Y-power splitter configuration

Unit cell
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Defect waveguides formed in the PBG structures are used
to construct Y-power splitters

H-pol
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Control defects are introduced to switch the flow of light
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Lt_low does one introduce the control defects ??

* Introduce dielectric rods with a MEMS device - like inserting
the control rods into a nuclear pile in a reactor

* Introduce a highly dispersive material whose dielectric constants
provide the desired values with a resonance frequency in
the pass-band of the PBG - requires a second laser source

* Introduce a metal-like rod by causing a plasma column to form
- dielectric breakdown event or a highly doped
semiconductor with correct dielectric values needed

Electronically controlled, reconfigurable
PBG structures may be realizable
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Reconfigurable PBG splitters and switches may be realizabl
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Reconfigurable PBG splitters and switches may be realizable“

E-pol 4
Case 2 PBG
metal posts BHHEHE X A X
1 blocking R
metal post :E:;:: ':::E: o,
f=0.937f, E; ;; ;; ‘e °
"o %"a"e® % o
noe l. .- l. o
T=8.10 % s e .
-
r
R/L = 1643 S




The two-dimensional TE Maxwell-Bloch system is

The electric and magnetic fields and the polarization components are
solved self-consistently:

TE Mazwell equations
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This system has been implemented successfully with the predictor-corrector scheme



Optical Triode Configuration

Control Beam

Input Beam

Two-level atom medium

o
Perfect electric conductor
grating l Atom loaded grating '
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e A Gaussian beam is incident upon a
' LF)I[‘: NARE grating loaded with two level atoms in their ground state
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“ A Gaussian beam is incident upon a

%”'{Hru e | grating loaded with two level atoms in their excited state
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The radiation patterns are readily obtained with a near-to-far-field
transform and confirm the desired triode switching behavior

Radiation pattern
5-10-5 pulse
| ve——— —

ﬁa

1

8] =]

Relative amplitude

-90 0 20

Angle from normal (degrees)

SIVERSITY oo
Py




