Panel II: Technology Integration for Insertion of OI in Computing

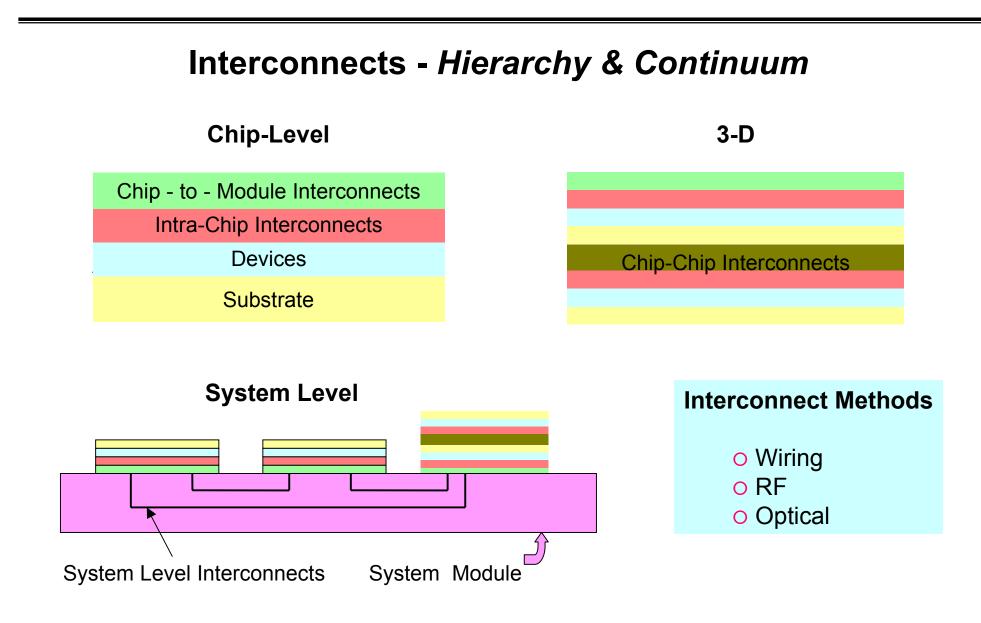
What tasks must be addressed for effective integration of OI technology?

Introduction: Kevin Martin - Georgia Tech

Panel Presentations:

- O Tim Drabik Georgia Tech
- Olif Fonstad MIT
- Volkan Ozguz Irvine Sensors
- O Perry Robertson Sandia National Laboratory
- Jim Hutchby SRC

Panel Discussion



- What major tasks must be addressed for effective integration of OI technology?
- What activities should occur in these tasks?
- Identify and employ useful relationships between them.

Optical Interconnects for High Performance Computing Workshop

Optical Interconnects for High Performance Computing Workshop

Hierarchy of Limits

System
Circuit
Device
Material
Fundamental

1998 ITRS Expectations for High-Performance Chips (*update*)

Year of First Shipment	2005	2008	2011	2014
Chip Area (mm ²)	520	620	750	901
Chip Pad Count (CPC)	3492	4776	6532	8935
Area Array Chip Pad Pitch (mm)	0.385	0.360	0.338	0.318
Signal & Clock I/O Count (est. 50% of CPC)	1746	2388	3266	4467
Gate Delay (ps)	7	4 - 5	3 – 4	NA
On-Chip Local Clock (GHz)	3.5	6.0	10.0	16.9
On-Chip Speed (GHz)	2.0	2.5	3.0	3.7
Multiplexed Chip-Board Speed (GHz)	2.0	2.5	3.0	3.7
Power Consumption (W)	160	170	175	183
Operational Lateral CTE Mismatch $(\mu m)^{^{*}}$	17	19	20	23

* For an organic PWB with a CTE = 20 ppm/C, and operation at 45C

Technology Integration Tasks:

• System Architecture:

Communication and Interconnect- Centric Architecture

• Physical Design Tools:

Build a library of physical interconnect cells that can be combined to generate models of interconnect networks.

• Materials and Processing:

Create hybridized systems composed of materials with dissimilar opto-electronic, chemical, and physical properties.

Technology Integration Tasks (cont.)

• Process Modeling and Simulation:

Develop and implement integrated physically-based models to simulate the physical structure and properties.

O Technology Assessment:

Evaluate the viability of different interconnect technologies.

• Reliability and Characterization:

Develop software modeling and experimental characterization tools to conduct reliability prediction, optimization and diagnostics for new technologies.

Technology Integration Tasks (cont.)

O Design:

Software tools and methodologies required to assist the design and verification of systems composed of heterogeneous elements

• Testing:

Methodologies and hardware to conduct burn-in and testing of high speed and complex parts at the wafer, chip, and system level

