

Phosphor Thermometry *Tutorial*

by Mike CatesSteve Allison

What is a phosphor?

- A phosphor is a chemical material that, when stimulated by absorption of energy – often in the form of photons – will emit photons – usually at lower energy (longer wavelength) than the stimulating source.
- \bullet In appearance, a phosphor is usually a fine white or pastelcolored powder. There are two general types of phosphors: organic and inorganic. This presentation deals with inorganic. The majority of thermometry applications in our experience have used inorganic phosphors. Organic fluorescing materials may have advantages in certain situations.

What is a phosphor? (continued)

- • Inorganic phosphors consist of:
	- −– Host material: e.g., oxide, garnet, sulfide, oxysulfide, vanadate, germanate, etc.
	- − Activator material (aka dopant or impurity): usually rare-earth or transition metal elements.
	- $-$ An advantage of these dopants is that, typically, the $\,$ emission consists of narrow bands.

Typical phosphor characteristics

- Must survive hazardous chemical environments
- Cannot be water soluble
- Durable
- Easy to apply
- • Not easily detected or noticed without specialized equipment
- There are a wide variety of ceramic phosphors which fit these characteristics.

C/PH 04-12

Background

- Phosphors became technologically and industrially important with the introduction of fluorescent lamps in 1938.
- Thermometry use suggested in German patent in 1938. First peer-reviewed article, to our knowledge, appeared in 1949.
- Between approximately 1950 to 1980, it was not widely used. Its most common use was for aerodynamics applications.
- Advances in lasers, microelectronics, and other supporting technologies enabled additional commercial as well as scientific uses.

Various phosphor characteristics are affected by temperature

- 1. Decay Time
- 2. Line shift and broadening
- 3. Ratio of emission lines
- 4. Emission distribution
- 5. Absorption band width and position
- 6. Excitation band width and position

Typical fluorescence spectra for rare-earth doped phosphors

 $\mathsf{\mathsf{F}\text{-}\mathsf{B}\mathsf{A}\mathsf{T}}$

TELI

Factors that affect fluorescence

- Dopant (activator) concentration may change the phosphor emission spectrum. Dopant concentration that maximizes fluorescence varies with dopant and host. At high concentrations, the emission characteristic lifetime may vary from a simple single exponential. Rise times are also affected by dopant concentration.
- Characteristic size of phosphor particles affects intensity and lifetime of fluorescence when size is around 5 microns or less. For $\mathsf{Y}_2\mathsf{O}_3$:Eu, e.g., decay time increases from 440 to 600 microseconds when particle size decreases from 0.42 to 0.11 microns.

Factors that affect fluorescence (continued)

- **Impurities:** Deliberately added rare-earth impurities may either increase or degrade fluorescence efficiency, depending on how energy levels match. The literature contains information on which pairings favor enhancement.
- **Magnetic Field:** At least one tesla is usually required to observe a change in fluorescence spectra and the material must be very cold, say 20 K.

Decay time vs temperature for selected phosphorsDWG, NO. K/G 96-569 GSS

10,000 1,000 $LuPO_A:Dy$ 100 YAG:Eu Lifetime (µs) YAG:Dy 10 $YVO₄:Dy$ YAG:Tb 1 Y_2O_3 :Dy $|YVO_4$:Eu LaO₂S₂:Eu Mg_4FGeO_6 :Mn 0.1 Y_2O_3 Eu 0.01 400 800 1,200 1,600 2,000 0 Temperature (Kelvin)

 (U)

Figure 12. Lifetime versus temperature of selected phosphors.

Intensities of emission bands are a function of temperature

• **Change in intensity at cryogenic temperatures**

La 2O2S:Eu at low temperature

Temperature dependence of excitation (Y 2O 3:Eu)

230 nm

375 nm

Temperature dependent line position and bandwidth

DWG. NO. K/G 95-888 GSS

Wavelength (Å)

Emission intensity versus rare-earth dopant in YVO 4

Example of ratio data

Pressure dependence of two pressure-sensitive phosphors

• **Pressure vs decay time for La 2O ²S:Eu (top curve) and Gd 2O 2S:Tb (lower curve)**

Origin of temperature dependence

 \bullet **Charge Transfer State Model**

Model of temperature and pressure dependence

$$
\tan := \left[a_1 + a_2 \cdot \left[\exp\left[\frac{-\left(P \cdot q + \text{Ects} \right) \cdot h \cdot c}{k \cdot T} \right] \right] \right]^{-1}
$$

• A model was developed, resulting in the equation above, that predicts the decay time, tau, versus both pressure and temperature for La $_2\mathrm{O}_2\mathrm{S}$:Eu. Three of the parameters, a_1 , a_2 , and Ects; are obtained from fitting to temperature vs decay time data. The reciprocal of the low temperature decay time, a_1 , is 6369 sec⁻¹. The transfer rate ratio, a_2 , from the excited 5 D₂ emitting state is 10¹²; and Ects = 3370 cm⁻¹ is the effective energy difference between the $^5\mathsf{D}_2$ state and the charge transfer state. K is the Boltzmann constant, h is Planck's constant, and c the speed of light. T is the temperature in Kelvin. P is the pressure in psi. q is obtained empirically, it is the slope of the pressure versus decay time curve. Here $q = 2.73 * 10^{-3}$ psi-1 * (cm-1)-1.

Phosphor selection criteria

- 1. Temperature Range of Application
- 2. Chemical compatibility
- 3. Target stationary or moving
- 4. Measurement Method used: decay time or ratio
- 5. Surface preparation considerations
- 6. Imaging or point measurements required

Pulsed laser deposition (PLD) can be used to apply phosphor coatingsORNL 98-1810C EFG

Permanent magnet motor

DWG NO. K/G 95-514 GSS

Set-up for piston measurement

Fluorescing piston

Intake valve setup

DWG. NO. K/G 95-508R GSS

Intake valve results

Time From Ignition (s)

Galvanneal steel temperature

Optics for galvanneal steel

Phosphor emission in afterburner flame

• **Afterburner flame impinging on a variable-area extractor. The white spot is phosphor luminescence.**

Blackbody vs fluorescence emission

Wavelength (nm)

OAK RIDGE NATIONAL LABORATORYU.S. DEPARTMENT OF ENERGY

DWG. NO. K/G 95-889R GSS

Precision limits are <10 mK for some phosphors and conditions

Low-temperature response

Low Temperature Phosphor - 50 to 350 °F

Averaged signal data of 460-nm emission from YAG:Tm at 1092 C

YAG:Tm temperature response

YAG:Dy 453-nm emission on blackbody background at 1306 C

YAG:Dy temperature response

Fluorescent lifetimes change when cantilever is heated

Measured energy compared with measured temperature in a micro-cantilever

Variation in Temperature and Joule heating with Applied Bias Current 1-10-02

Micro-cantilevers

 (a)

 (b)

LED-induced fluorescence from a micro-cantilever

fluorescence from microcantilever coated with phosphor (excited with \sim 2 ms duration square wave pulse from blue LED)

Signal & background at 1706 C

YAG:Dy emission strengths vary with dopant concentration

Emission bands of Y 2O ²S:Pr and pressure sensitive paint (PSP)

Emission bands: YAG:Ce and PSP

YAG:Ce and PSP

Emission bands: YAG:Cr and PSP

YAG:Cr and PSP

Emission bands: Gd₂O₂S:Tb

Gd 2O ²S:Tb (low Tb concentration) and PSP

Bibliography of phosphor chemistry and physics

- • K. T. V. Grattan and Z. Y. Zhang, *Fiber Optic Fluorescence Thermometry*,Chapman & Hall, London (1995). (New Edition planned)
- • G. Blasse and B. C. Grabmaier, *Luminescent Materials*. Springer Verlag, New York (1994).
- • R. C. Ropp, *Luminescence and the Solid State*, Studies in Inorganic Chemistry, Vol. 12, Elsevier, Amsterdam (1991).
- • S. W. Allison and G. T. Gillies, *Remote Thermometry with Thermographic Phoshpors: Instrumentation and Applications*, Review of Scientific Instruments, 68(7), 1997.
- • R. C. Ropp, *The Chemistry of Artificial Lighting Devices: Lamps, Phosphors and Cathode Ray Tubes*, Studies in Inorganic Chemistry, Vol. 17 (Elsevier, Amsterdam, 1993).
- • Handbook of Phosphors, ed. By S. Shionoya and W. M. Yen, CRC Press, NY. 1999.

