Transportation Weather Forecasting

Rick Steed, Cliff Mass, Mark MacIver

Weather is very important to transportation

• In U.S.A. each year:

 7,000 people die in weather-related car accidents

- 800,000 people are injured

1 billion hours of delays

In Washington State

Snoqulamie Pass

- 1,000 m elevation
- 10 m snowfall / year
- 15,000 cars / day
- 3,000 trucks / day
- \$1,500,000 / year

Primary Concern

• Snowfall

WSDOT Weather Applications

ARROWS

 First ensemble-based web page for transportation weather in Washington

ARROWS Forecasts

ARROWS Forecasts

Based on UWME ensemble mean

Take 8 ensemble members and average their forecasts over the entire model grid

 Extract point forecasts and perform simple bias correction to improve systematic errors

ARROWS Uncertainty

- Based on UWME spread
- 0% confidence if :
 - current spread > 3 month mean spread + 2 SD
- 100% confidence if :
 - Current spread < 3 month mean spread 2 SD

Problem with ensemble mean forecasts and confidence

• Still deterministic

 Simple ensemble spread not best measure of confidence

What to do now? Probabilistic forecast products

What to do now?

Probabilistic forecast products

– Provide users with the range of possibilities

– Provide users with a measure of uncertainty

How: probabilistic forecasts

Combine ensemble member forecasts

- Democratic Voting
 - Each member votes equally
 - Assumes "truth" captured by ensemble
- Uniform Ranks
 - Begins to correct for cases when "truth" lies outside ALL ensemble member solutions
 - Assumes Gumbel distribution to account for unrepresented tails (basically extrapolates from the distribution)

Reliability (Demo)

Reliability (Uni)

Natural Laboratory: I-90

WSDOT Assets over Snoqualmie Pass

~10 RWIS observation sites, ~10 mi. apart

– Sensors

- Air temperature
- Precipitation (Yes/No)
- Pavement temperature
- Wind
- Report every 20 minutes

Three Distinct Climates

Vast Dataset

- Fall 2002 through present
 - Observations
 - Complete ensemble model output

Major work remaining

Identify optimal method to compute forecasts

 Develop method(s) to deliver probabilistic forecast information effectively and efficiently