# Review of UWME Forecast Performance and Post-Processing

Eric P. Grimit

# University of Washington Atmospheric Sciences



Supported by: ONR Multi-Disciplinary University Research Initiative (MURI) and A Consortium of Federal and Local Agencies



# **Multi-Analysis Collection**

|                                                                                                                    |                 | <b>Resolution</b> (     | Objective              |               |
|--------------------------------------------------------------------------------------------------------------------|-----------------|-------------------------|------------------------|---------------|
| Abbreviation/Model/Source                                                                                          | Туре            | Computational           | Distributed            | Analysis      |
| <b>Solution gfs</b> , Global Forecast System (GFS),<br>National Centers for Environmental Prediction               | Spectral        | T254 / L64<br>~55 km    | 1.0° / L14<br>~80 km   | SSI<br>3D Var |
| <b>cmcg</b> , Global Environmental Multi-scale (GEM),<br>Canadian Meteorological Centre                            | Finite<br>Diff  | 0.9°×0.9°/L28<br>~70 km | 1.25° / L11<br>~100 km | 3D Var        |
| <b>NCEP</b> eta, limited-area mesoscale model,<br>National Centers for Environmental Prediction                    | Finite<br>Diff. | 12 km / L45             | 90 km / L37            | SSI<br>3D Var |
| <b>gasp</b> , Global AnalysiS and Prediction model,<br>Australian Bureau of Meteorology                            | Spectral        | T239 / L29<br>~60 km    | 1.0° / L11<br>~80 km   | 3D Var        |
| <b>jma</b> , Global Spectral Model (GSM),<br>Japan Meteorological Agency                                           | Spectral        | T106 / L21<br>~135 km   | 1.25° / L13<br>~100 km | OI            |
| <b>ngps</b> , Navy Operational Global Atmos. Pred. System,<br>Fleet Numerical Meteorological & Oceanographic Cntr. | Spectral        | T239 / L30<br>~60 km    | 1.0° / L14<br>~80 km   | OI            |
| <b>tcwb</b> , Global Forecast System,<br>Taiwan Central Weather Bureau                                             | Spectral        | T79 / L18<br>~180 km    | 1.0° / L11<br>~80 km   | OI            |
| <b>ukmo</b> , Unified Model,<br>United Kingdom Meteorological Office                                               | Finite<br>Diff. | 5/6°×5/9°/L30<br>~60 km | same / L12             | 3D Var        |

#### Old UWME and UWME + Physics Configuration

#### (October 2002 – January 2005)

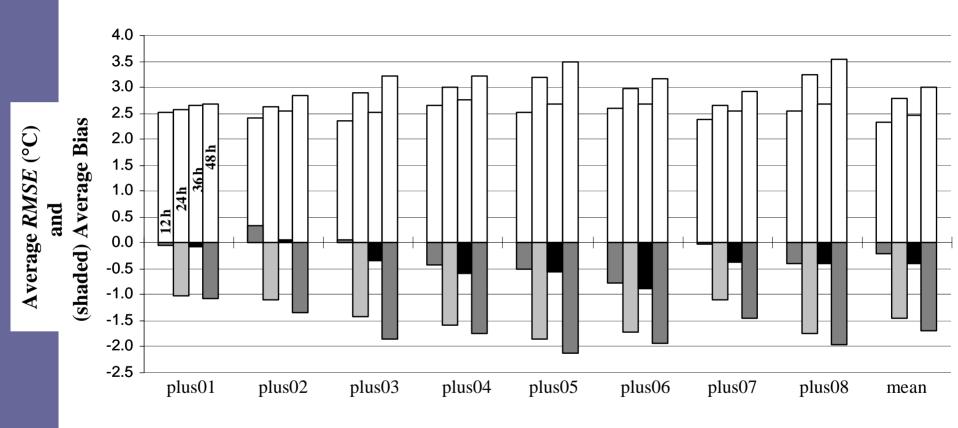
|      |        | PBL       |         |                       | Cumulus               |                 |                 |                 |           |                     |                   |
|------|--------|-----------|---------|-----------------------|-----------------------|-----------------|-----------------|-----------------|-----------|---------------------|-------------------|
| IC   | ID#    |           | Soil    | vertical<br>diffusion | Cloud<br>Microphysics | 36-km<br>Domain | 12-km<br>Domain | shlw.<br>cumls. | Radiation | SST<br>Perturbation | Land Use<br>Table |
| UW   | /ME    | MRF       | 5-Layer | Y                     | Simple Ice            | Kain-Fritsch    | Kain-Fritsch    | Ν               | cloud     | standard            | standard          |
| UWI  | ME+    |           |         |                       |                       |                 |                 |                 |           |                     |                   |
| avn  | plus01 | MRF       | LSM     | Y                     | Simple Ice            | Kain-Fritsch    | Kain-Fritsch    | Y               | RRTM      | SST_pert01          | LANDUSE.plus1     |
| cmcg | plus02 | MRF       | 5-Layer | Y                     | Reisner II            | Grell           | Grell           | N               | cloud     | SST_pert02          | LANDUSE.plus2     |
| eta  | plus03 | Eta       | 5-Layer | N                     | Goddard               | Betts-Miller    | Grell           | Y               | RRTM      | SST_pert03          | LANDUSE.plus3     |
| gasp | plus04 | MRF       | LSM     | Y                     | Shultz                | Betts-Miller    | Kain-Fritsch    | N               | RRTM      | SST_pert04          | LANDUSE.plus4     |
| jma  | plus05 | Eta       | LSM     | N                     | Reisner II            | Kain-Fritsch    | Kain-Fritsch    | Y               | cloud     | SST_pert05          | LANDUSE.plus5     |
| ngps | plus06 | Blackadar | 5-Layer | Y                     | Shultz                | Grell           | Grell           | N               | RRTM      | SST_pert06          | LANDUSE.plus6     |
| tcwb | plus07 | Blackadar | 5-Layer | Y                     | Goddard               | Betts-Miller    | Grell           | Y               | cloud     | SST_pert07          | LANDUSE.plus7     |
| ukmo | plus08 | Eta       | LSM     | N                     | Reisner I             | Kain-Fritsch    | Kain-Fritsch    | N               | cloud     | SST_pert08          | LANDUSE.plus8     |
|      |        |           |         |                       |                       |                 |                 |                 |           |                     |                   |

- 1) Albedo
- 2) Roughness
  - Length
  - 2) Maiatura
- 3) Moisture
  - Availability

- Assumed differences between model physics options approximate model error coming from sub-grid scales
- Perturbed surface boundary parameters according to their suspected uncertainty

#### **Member-Wise Forecast Bias Correction**

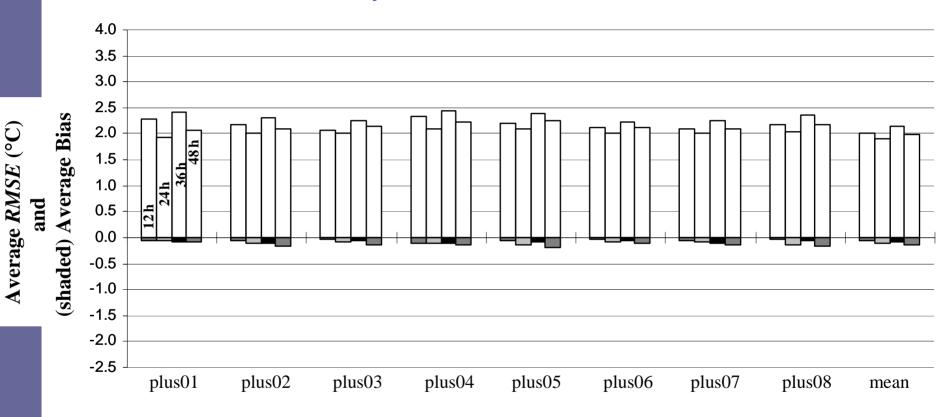
#### 2-m Temperature



(0000 UTC Cycle; October 2002 – March 2003) Eckel and Mass 2005

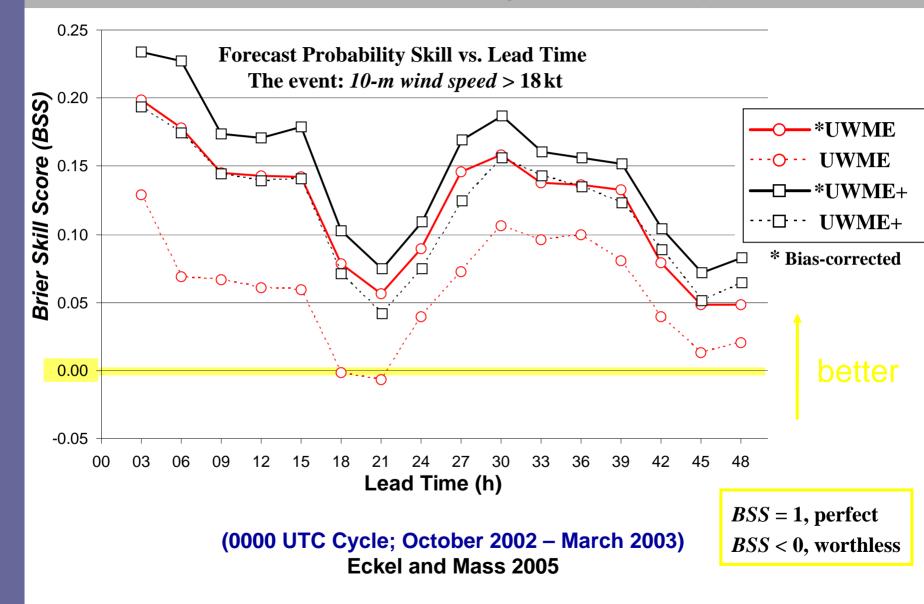
#### **Member-Wise Forecast Bias Correction**

#### 2-m Temperature 14-day additive bias correction

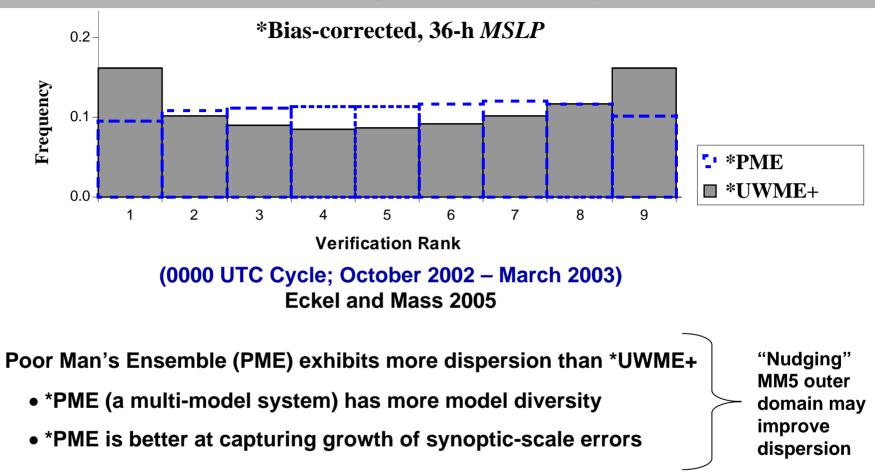


(0000 UTC Cycle; October 2002 – March 2003) Eckel and Mass 2005

#### **Forecast Probability Skill Example**



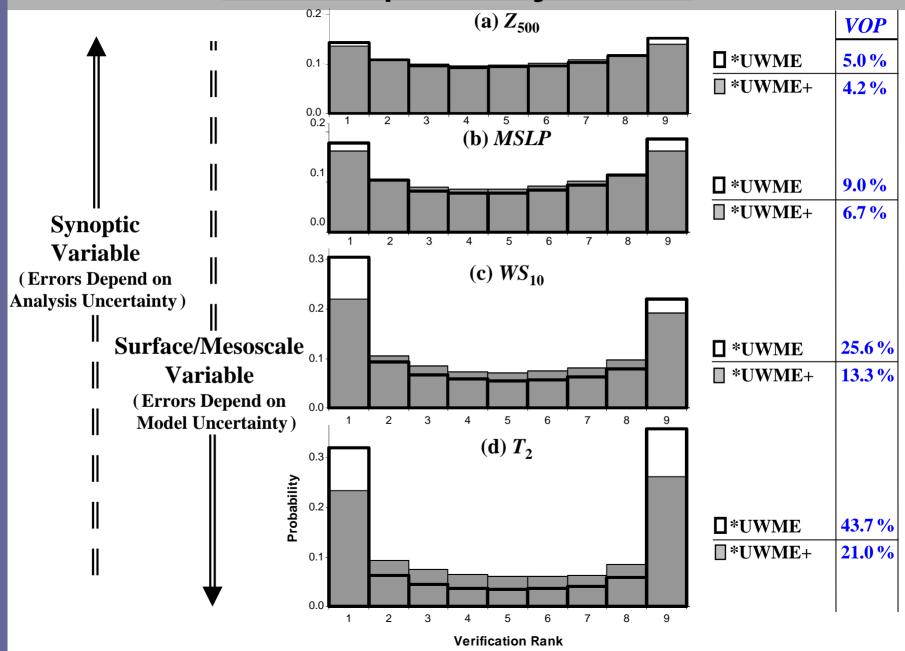
#### **Under-Dispersion Example**



#### **Verification Rank Histogram**

Record of where verification fell (i.e., its rank) among the ordered ensemble members:
Flat Well-calibrated (truth is indistinguishable from ensemble members)
U-shaped Under-dispersive (truth falls outside the ensemble range too often)
Humped Over-dispersive

#### **Under-Dispersion by Variable**

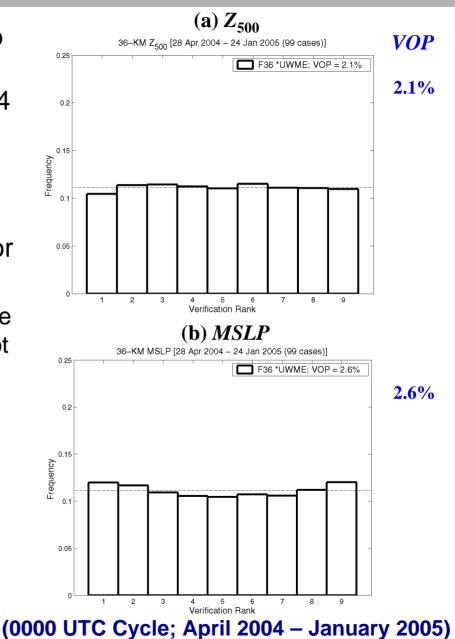


#### Effect of Nudging

FDDA ("nudging") was applied to the 36-km domain on all UWME forecasts beginning 27 April 2004 with the 1200 UTC run.

Has this helped?

- Apparently, the answer is YES for synoptic variables.
  - Although, there is some evidence for over-dispersion now (T<sub>850</sub>, not shown).
  - Note that, comparisons with the non-nudged UWME are not completely fair due to different time periods of study.



# **Post-Processing: Forecast Bias Correction**

- Under-dispersion is NOT corrected.
  - In fact, because this bias correction is applied to each member individually:
    - The ensemble spread is reduced.
    - The ensemble spread-skill relationship is degraded. (please visit my <u>poster</u> for more information on this topic!)

One alternative is to estimate forecast bias from the ensemble mean and apply it to all members.

- This is the usual approach.
- This would preserve ensemble spread, which appears to be valuable in an under-dispersive system, even if it is "bad spread".
- The original spread-skill relationship, if one exists, would be maintained.
- Probability forecast skill might be lower.

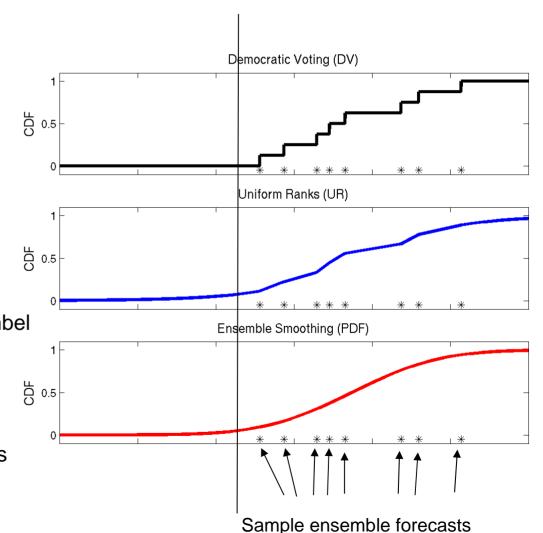
# Post-Processing: Probability Densities

- Q: How should we infer forecast probability density functions from a finite ensemble of forecasts?
- A: Some options are...
- Democratic Voting (DV)

 $\blacksquare P = x / M$ 

x = # members > or < threshold M = # total members

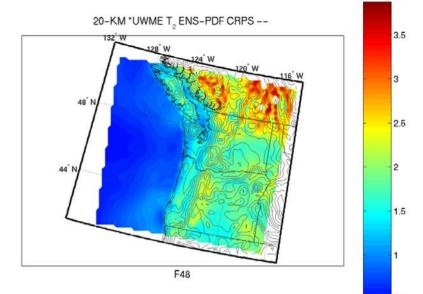
- Uniform Ranks (UR)\*\*\*
  - Assume flat rank histograms
  - Linear interpolation of the DV probabilities between adjacent member forecasts
  - Extrapolation using a fitted Gumbel (extreme-value) distribution
- Ensemble Smoothing (PDF)
  - Fit a statistical distribution (e.g., normal) to the member forecasts
  - \*\*\*currently operational scheme

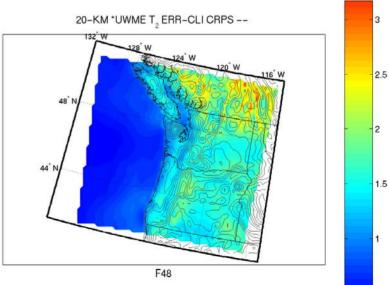


5 March 2005 10:00 AM

# Post-Processing: Calibration

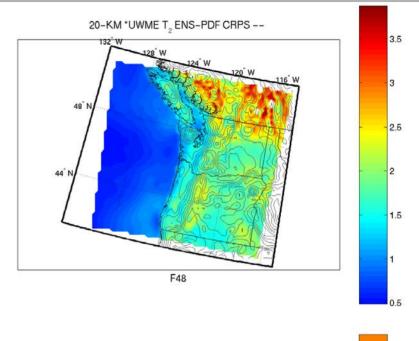
- One can convert a deterministic forecast into a probabilistic forecast by "dressing" it with its historical forecast error statistics.
  - Such a probability forecast is timeinvariant (a static forecast of uncertainty; a climatology).
  - Such a probability forecast is calibrated for large samples, but not very sharp.
- For the ensemble mean, we shall call this forecast <u>mean error climatology</u> (MEC).
- We have found that MEC performs extremely well (e.g., 48-h 2-m temperature forecasts at right).
  - MEC consistently outperforms the ensemble PDF.

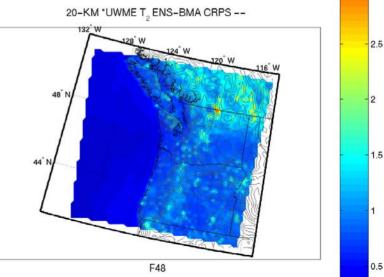




### **Post-Processing: Calibration**

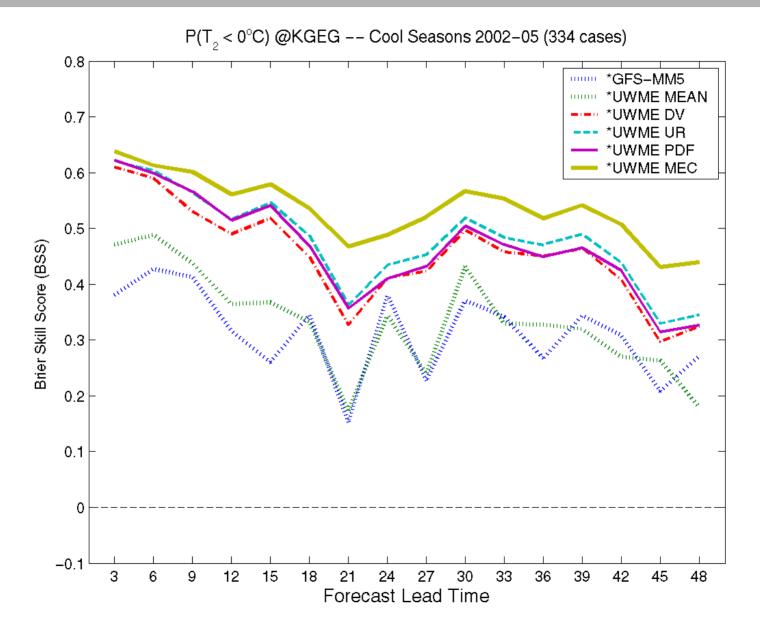
- Bayesian Model Averaging (BMA) has several advantages:
  - Time-varying uncertainty forecast
  - A way to keep multi-modality, if it is warranted
  - Can use short training periods with good results
- After several different attempts and configurations, we found that:
  - An adaptation of BMA where the training data is selected from a neighborhood of grid points with similar land-use type and elevation produced EXCELLENT results!
  - Example at right uses only 14 training days.





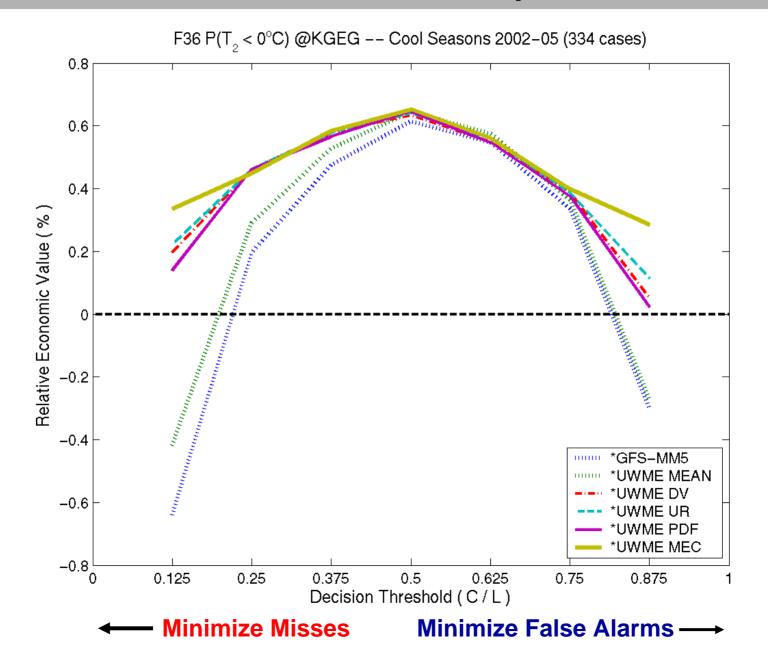
#### 5 March 2005 10:00 AM

#### <u>A Concrete Example</u>



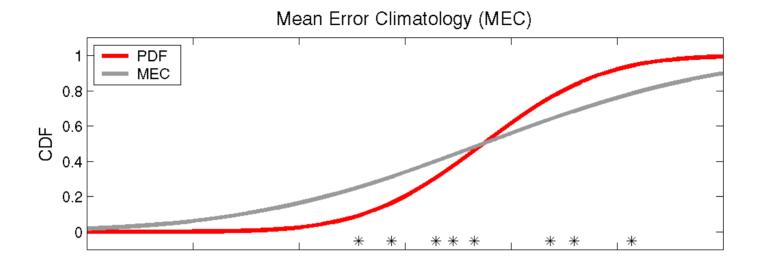
5 March 2005 10:00 AM

#### <u>A Concrete Example</u>

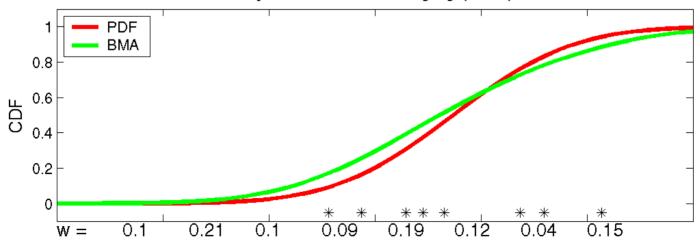


## **Extra Slides**

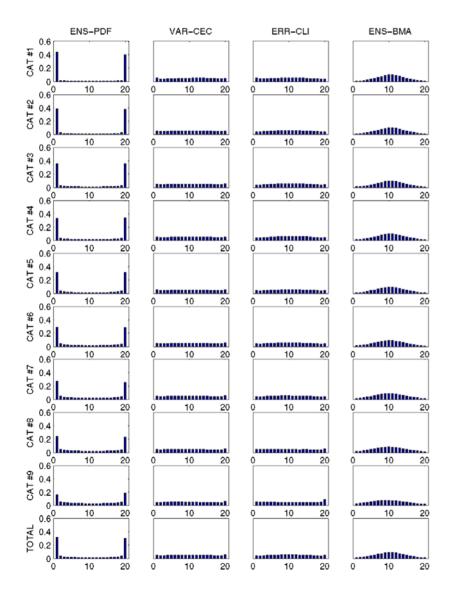
#### **Post-Processing: Probability Densities**



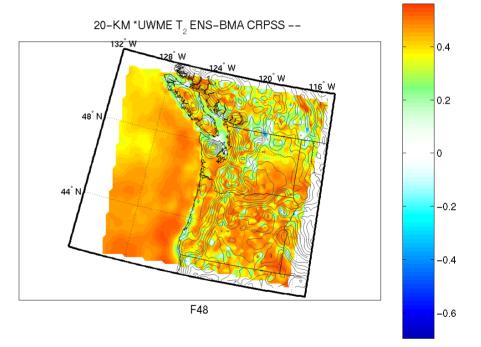
Bayesian Model Averaging (BMA)



#### **BMA – Neighbor\* Weights/Variance**



#### BMA improvement over MEC



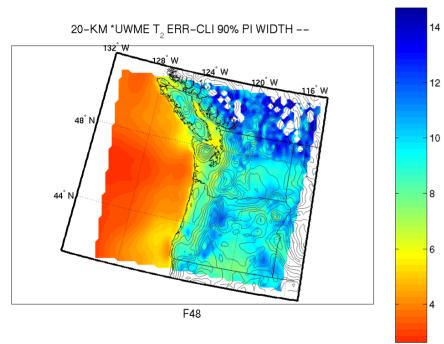
\*neighbors have same land use type and elevation difference < 200 m within a search radius of 3 grid points (60 km)

#### 2005 Pacific Northwest Weather Workshop

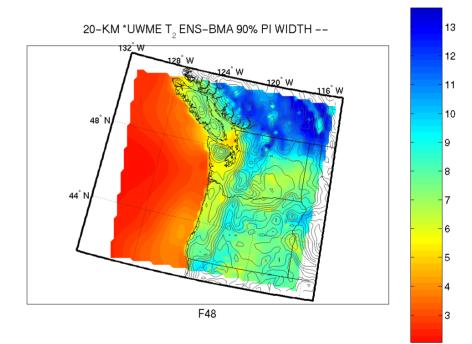
5 March 2005 10:00 AM

#### 90% Prediction Interval Widths (Sharpness)

#### **ERR-CLI**



#### BMA – Neighbor Weights/Variance



## Panel Discussion:

# How do we effectively communicate probabilistic weather information to the public and users?

#### The "Academic" Perspective

# #1: Know the limitations of the probabilistic forecasts you are communicating!

- Is it a "calibrated" probabilistic product? (can it be taken at face value?)
- What is the size of the ensemble from which this product is generated? (what implications does that have for rare/extreme events?)
- At what forecast lead time does this product cease to have value? (when should you switch to using a climatology-based product?)

#### #2: Know your users!

What is the relative cost of false alarms vs. missed events???



#### #3: Presentation, presentation, presentation!

TV, internet, newspaper, radio





