An Automated Mesoscale Forecast Verification System

Stuart Maclean, Scott Sandgathe Applied Physics Laboratory University of Washington

Motivation

 A tool for the investigation of meteorological datasets

Focus on model verifications, with credit for bold but perhaps inaccurate forecasts

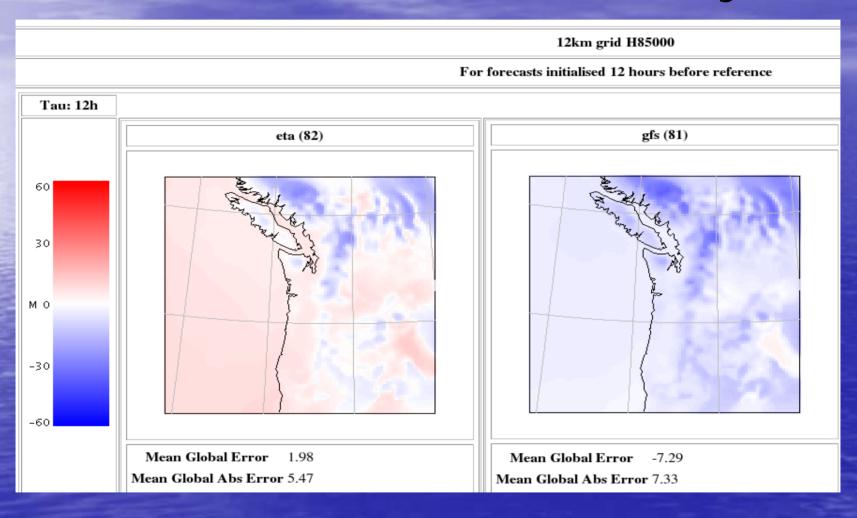
Easy to use

APL/UW aMVT

Web-hosted manipulation of UWME data

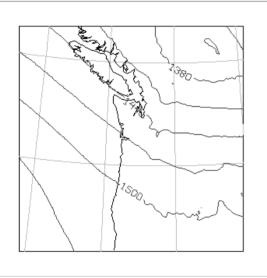
Submit-process-notify-review cycle

In addition to grid-wide verification, decompose forecast errors into amplitude and displacement components

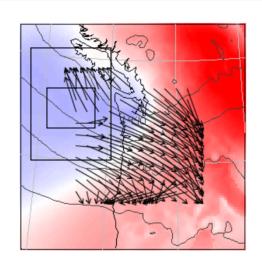

Dimensionality

- UWME SREF system
- Up to 5 years, up to 2 runs per day
- 12km/36km domains
- 8+ models, 20+ fields, 16+ taus
- APL/UW has ~2TB of MM5 output data

al MVT: Input


			Email xx	Submit Query	Enumerate	Clear
Date Range		Data Parameters				
From: To: Initialization Hour:	Dec ▼ 01 ▼ 2004 ▼ Mar ▼ 01 ▼ 2005 ▼ □ 002 □ 122	Data Parameters	SST SLP Surface Pressure 2m Temperature			
Analysis Model	cent	Pressure Dependent Data Parameters	Geopotential Height Mixing Ratio Temperature U Wind Component			
Hour Domain	0 <u>▼</u> 12KM □ 36KM	Pressure Level	850 mb			
Forecast Model						
Model Forecast Hour	cent eta gfs ngps v 00 12 24 36 48 v	Search Parameter Matching Operator Search Type Search Cell Search Area Arrows to Display	MSE MQE Full LSA LSA with IBM Width: Height: Height:	_		
Temporal Shift	+/- 3 hr +/- 6 hr					
Display Options Fields marked in red a	Show Images Show Searches Show Errors re required.					

aMVT: Verification Summary

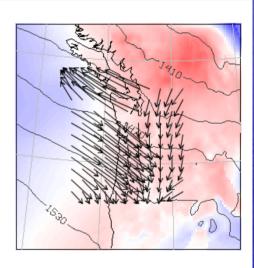


aMVT: 'Feature' matching

cent : valid at 2005020500

eta: init at 2005020300 valid at 2005020500

Mean Error 13.3


Mean Absolute Error 21.2

Mean Search Error 406 (Search Details)

Mean Amplitude Error 100 (24.7%)

Mean Spatial Error 306 (75.3%)

gfs: init at 2005020300 valid at 2005020500

Mean Error 4.56

Mean Absolute Error 9.76

Mean Search Error 118 (Search Details)

Mean Amplitude Error 28.1 (23.7%)

Mean Spatial Error 90.2 (76.3%)

aMVT: Retrievable Results

Index of processed requests

- <u>20041102_20050302_0_d2_H85000_cent_0_eta+gfs+ngps_24</u> (stuart20050303145157)
- 20040302_20050302_0_d2_H85000_cent_0_eta+gfs+ngps+ukmo_12+24+36+48 (stuart20050303115109)
- 20050301_20050301_0_d2_T50000_cent_0_eta_24_full_mean.sqrdiff_20x20_40x40 (ptewson20050302111636)
- 20050224_20050224_0_d2_H50000_cent_0_eta+ngps_24_full_mean.sqrdiff_20x20_30x30 (ptewson20050225122309)
- 20050224_20050224_0_d2_H50000_cent_0_eta+ngps_24_full_mean.sqrdiff_20x20_30x30 (ptewson20050225121510)
- 20050224_20050224_0_d2_H50000_cent_0_eta+ngps_24_full_mean.sqrdiff_20x20_30x30 (ptewson20050225120602)
- 20050122_20050222_0_d2_H85000_cent_0_eta+gfs_12_full_mean.sqrdiff_20x20_30x30 (stuart20050223130158)
- 20050122_20050222_0_d2_H85000_cent_0_eta+gfs_24_full_mean.sqrdiff_20x20_30x30 (stuart20050223092728)
- 20050221_20050221_0_d2_T2_cent_12_jma+ngps_36 (ptewson20050222162048)
- 20050215_20050220_0_d1_H85000_cent_0_gfs+ngps_36_ibm_mean.quarticdiff_20x20_25x25 (sandgathe20050222152354)
- 20050215_20050220_0_d1_H85000_cent_0_gfs+ngps_36_ibm_mean.quarticdiff_20x20_25x25 (sandgathe20050222152343)

Further processing?

 aMVT maintains experimental results, but...

- Images are WYSIAYG...
- So aspects of the results (e.g. search 6tuples) available for digital output into Matlab, R, etc

Under Development

Feature Identification

Rotation, Divergence

Data formats: NetCDF

Wider Applicability

 aMVT is essentially non-programmatic manipulation of gridded/matrix data sets

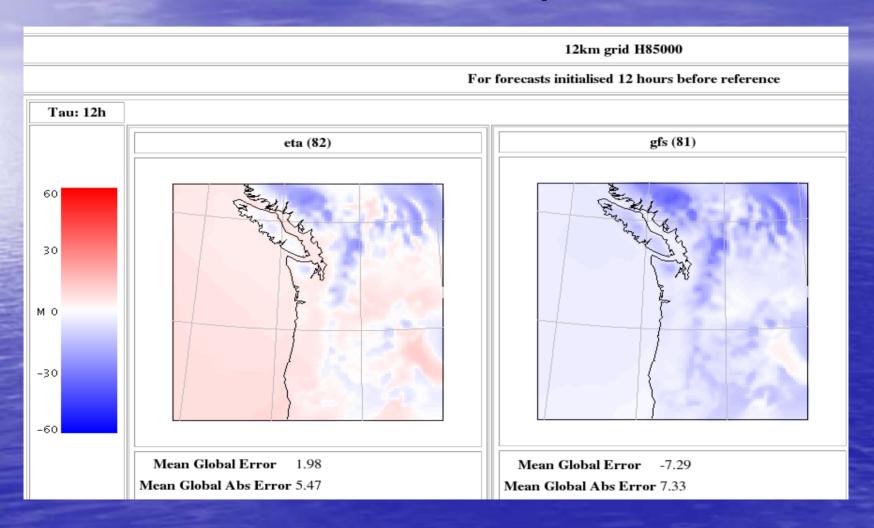
Transferable to other feature-based comparisons (satellite imagery?)

Conclusions

 Automated mesoscale verification is a useful 'first step' tool in the analysis and comparison of forecast outputs

Spatial and/or temporal adjustments to forecast features allow credit to forecasts whose global performance score poorly

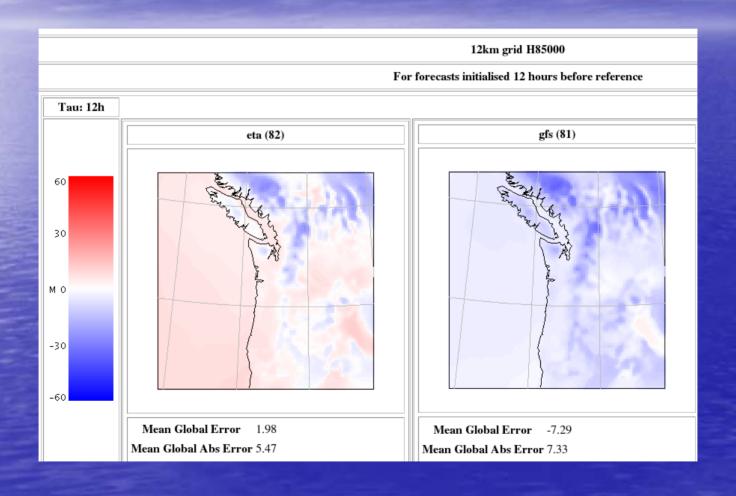
Links


http://mvt.apl.washington.edu

http://isis.apl.washington.edu/extractor/ MM5DataExtractor.jsp

mailto:stuart@apl.washington.edu

aMVT: Error Decomposition


Technologies

· Java

VisAD

WebApp/HTTP

Graphical View of Search Performance ??

Feature Verification 1

- Small box boundary
- Feature snaps wrong...

Individual Result

Pic of 1 per run result, global

Recent Improvements

- Absolute scaling of field differences
- Digital output for statistical processing
- Results Index
- Geo-registering of model output

Typical (?) Questions

- Over the past 3 months, did ETA perform better than GFS regarding 850mb geopotential height with Cent as a reference?
- Is the

Features

- Full grid comparisons
- Sub-grid comparisons, with both spatial and temporal searches
- Composite and individual results
- Graphical, textual outputs
- Retrievable results
- Submit-process-notify-view cycle

Coverage

- UW Atmos Sciences ensemble data
- APL uses subset of generated output
- MM5 output format, need others