Real Time Data Assimilation at the University of Washington

Ryan D. Torn and Gregory J. Hakim University of Washington

2005 Pacific Northwest Weather Workshop March 4, 2005 Most operational centers create ensemble members by perturbing around a deterministic estimate

- ECMWF singular vectors
- NCEP bred vectors
- UW multi-model analyses and/or physics

But, what if we could produce probabilistic analyses, with each ensemble analysis member an equally likely representation?

Ensemble Kalman Filter

Marriage of data assimilation and ensemble forecasting

$$\mathbf{X}^{a} = \mathbf{X}^{b} + \mathbf{K}(\mathbf{y} - \mathbf{H}\mathbf{X}^{b})$$
$$\mathbf{K} = \mathbf{P}^{b}\mathbf{H}^{T}(\mathbf{H}\mathbf{P}^{b}\mathbf{H}^{T} + \mathbf{R})^{-1}$$
$$\mathbf{P}^{b} \approx \frac{1}{N_{e} - 1}\mathbf{X}^{'b}\mathbf{X}^{'b^{T}}$$

Unlike operational methods, P^b calculated from ensemble!

Ensemble Covariances

3D-VAR covariance

ensemble covariance

System Specifications

- Weather Research and Forecasting model, (WRF) 45 km resolution, 33 vertical levels
- 90 ensemble members
- 6 hour analysis cycle
- ensemble forecasts to t+24 hrs at 00 and 12 UTC
- assimilate rawindsonde, ACARS, cloud drift winds, ASOS, buoy and ship data

Observation Densities

aircraft obs.

cloud winds

Probabilistic Analyses

sea-level pressure

500 hPa height

500 hPa heights, height spread and rawindsonde obs valid 2005020612

Large uncertainty associated with shortwave approaching in NW flow

Ensemble inliers/outliers

inlier

outlier

sea-level pressure for outlier valid 2005020612 (mem = 37: 2.9 hPa)

Microphysical Analyses

-70 -65 -60 -55 -50 -45 -40 -35 -30

20 15 10

20 February 2005, 00 UTC

COMPOSITE REFLECTIVITY Sat 19 Feb 2005 16:06 PST

composite radar

model analysis

Ensemble Forecasts

Analysis

24-hour forecast

Forecast Sensitivity

How does a one unit difference in the analysis field at one point alter the forecast of a given field at another point?

$$\Delta J^{f} = \frac{\operatorname{cov}(X_{i}^{a}, J^{f})}{\operatorname{var}(X_{i}^{a})} \times \Delta X_{i}^{a}$$

Sensitivity Example

analysis SLP

850 hPa temp.

Analysis Verification

Forecast Verification

University of Washington Real-Time Ensemble Kalman Filter

Analyses | Forecasts

Sea Level Pressure, spread and surface obs valid 2005030212

500 hPa heights, height spread and rawindsonde obs valid 2005030212

http://www.atmos.washington.edu/~enkf

Filter status Wed Mar 2 09:27:57 PST 2005 : Analysis completed on: Wed Mar 2 07:16:14 PST 2005

Observations assimilated

Radiosonde verification (00 and 12 UTC)

Filter performance: E1/E2 = 0.758 (LOG)