Applying an Ensemble Approach to Parcel Back Trajectories

Brad Snyder – Environment Canada Xin Qui - RWDI AIR Inc.

Presented by: Jennifer Hay – Environment Canada

Outline

Background and Method

- Motivation
- RWDI Sensitivity Tests
- Back Trajectories

Results

- Coarse resolution deterministic v high resolution ensembles
 - Comparison of CMC with MC2
- Mesoscale Flow patterns
 - Sea/Land breeze

Conclusions

Motivation

- Investigate the sensitivity of changes to MC2 microphysics and geophysical fields to various model output
- Using high temporal and spatial resolution model, generate regional back trajectory guidance
- Contrast deterministic trajectory output with an ensemble of trajectories

Modeling Domains

MC2 Sensitivity Tests

ID	Description	Scenario Name
Control Runs		
4	Nesting run 4-km using force-restore surface scheme and default	fcrest_4km_base
	geophysics settings	
10	Nesting run 4-km using ISBA surface scheme and default geophysics	isba_4km_base
	settings	
2	Nesting run 2-km using ISBA surface scheme and default geophysics	isba_2km_base
	settings	
Changes in Geophysical Fields		
5	Change soil moisture for 4 km run based on control-4km (ISBA run)	isba_4km_chgmoist
6	Change terrain for 4 km run based on control-4km (ISBA run)	isba_4km_chgtopo
7	Change vegetation for 4 km run based on control-4km	isba_4km_chgvg
8	Change roughness length for 4 km run based on control-4km	isba_4km_chgz0
9	Change-all geophysics for 4 km run based on control-4km	isba_4km_chgall
1	Change-all geophysics for 2 km run based on control-4km	isba_2km_chgall
Changes in Microphysics Schemes		
3	Run 2km MC2 using Kong Yau schemes based on Change-all	isba_2km_kfcky
	geophysics 4km	
11	Run 4km MC2 using Kong Yau schemes based on Change-all	isba_4km_kfcky
	geophysics 4km	
12	Run 4 km MC2 by increasing vertical resolution based on Change	isba_4km_kfcky45l
	cloud physics	уг

MC2 Sensitivity Study: Preliminary Results

Back Trajectory Output

- Modified CMC back trajectory code (*Backtraj 1.3*) for MC2 output
- Read heights rather than pressure levels
- Twice a day 00Z, 12Z, 24hrs period
- Examined 3 receptor locations in Southwest BC
- 4 receptor heights 50m, 500m, 1200m, and 2500m

Comparison of Back Trajectory Output

• MC2 V4.9.7 (RWDI)

- 4 km resolution
- 1 hour time step
- 19 levels below 3000m

• CMC Global Model (Operational)

- 100 km resolution
- 3 hour time step
- 9 levels below 3000m

• CMC HIMAP (Available on request)

- 10 km resolution
- 1 hour time step
- 15 levels below 3000m

Results

Comparison of CMC with RWDI MC2

- Example:13-16 August 2001
 - Changing from dry stagnant to marine airmass
 - Stratus incursion into Lower Fraser Valley on 16 August

RWDI Project No. W04-334: MC2 Back Trajectory Runs

•Comparison of HIMAP with RWDI MC2

RWDI Project No. W04-334: MC2 Back Trajectory Runs

RWDI Project No. W04-334: MC2 Back Trajectory Runs

Mesoscale Flow Patterns

- Afternoon sea breeze
 - preceded by light variable winds (morning), diverging solutions from ensemble
- Morning land breeze
 - most members in agreement

Time = 0000 UTC, Height = 0500 m

Conclusions

- Ensemble back trajectories highlight the uncertainty associated with winds in the boundary layer
- Back trajectories at lower level (50m) are more sensitive to the changes in geophysical and physical parameters
- Back trajectories above PBL (2500m) are not sensitive to the changes in geophysical and physical parameters

Conclusions

- Higher temporal and spatial resolution back trajectories provide valuable detail for regional air quality applications
- Ensemble back trajectories provide a level of confidence for decision makers in assessing source regions for air pollution
- Availability of real-time ensemble back trajectories would aid in depicting mesoscale flow patterns (e.g., sea breeze/land breeze)

Northern Air Masses

NOAA AIR RESOURCES LABORATORY Backward trajectory ending at 00 UTC 15 Aug 01 EDAS Meteorological Data

The End

•EXTRAS

Time = 0000 UTC, Height = 2500 m Date Revised: December 6, 2004 RWDI Project No. W04-334: MC2 Back Trajectory Runs

Time = 1200 UTC, Height = 0050 m Date Revised: December 6, 2004 RWDI Project No. W04-334: MC2 Back Trajectory Runs

Forecast valid 00Z26AUG2001 Isentropic Winds (m/s) and Trajectory: Longiey2

Red forward trajectory to valid time + 15h

Blue book trajectory from valid time - 15h