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Bayesian Model Averaging

• Weighted average of multiple models
• Weights determined by posterior 

probabilities of models
• Posterior probabilities given by how well 

each member fits the training data
• Weights, then, give an indication of the 

relative usefulness of ensemble members



BMA for ensembles
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Picture taken from Raftery, Balabdaoui, Gneiting, and Polakowski (2003),
“Calibrated MesoscaleShort-Range Ensemble Forecasting Using Bayesian Model Averaging.”



The Problem

• Methods exist for using Bayesian Model 
Averaging to create probabilistic forecasts for 
weather quantities that can be expressed as a 
mixture of normals (Raftery et. al., 2005, MWR), 
such as temperature and pressure

• For quantities such as wind speed and 
precipitation, distributions are not only non-
normal, but not purely continuous – there are 
point masses at zero



What Does a Precipitation 
Distribution Look Like?

Conditional Histograms

Observed given forecast from 1.5 to 4 Observed given forecast from 55 to 80

in .01”



How to Model Zeroes

proportion of zeroes per bin logit of proportion of zeroes versus
cubed root of bin center



How to Model Non-Zeroes

mean (left) and variance (right) of fitted gammas on each bin



Complete Model
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This suggests the following model:
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Current Implementation

• Fitting P(0) by logistic regression
• Fitting means as a linear bias correction
• Fitting variances and weights by EM 

algorithm



Results

Consensus-voting forecasted probability of rain versus 
observed frequency of rain

Results for December 12, 2002 through October 7, 
2003 24-hour accumulation precip forecasts, 
with 40 Julian day training.



Results

Binned forecasted probability of rain versus observed 
frequency of rain – consensus voting as crosses, our 
model as red dots

Results for December 12, 2002 through October 7, 
2003 24-hour accumulation precip forecasts, 
with 40 Julian day training.



PIT Histogram versus Verification 
Rank Histogram



Interval Coverage

• 90% lower intervals had 95.9% coverage, 
with an average width of .18”

• 90% interval from climatology had a width 
of .24”

• 90% interval from raw ensemble had 
92.9% coverage with an average width of 
.20”



What’s Next

• Try a more complicated model, fitting a 
point mass at zero, an exponential for 
“drizzle,” and a gamma for true rain 
around each member forecast



Proposed Model

Red: no rain, Green: drizzle, Blue: rain



Problems with this approach

• Potential of over-fitting
• Difficult to determine from inspection how 

the exponential should relate to the 
forecast

• Exponential could prove difficult to fit
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