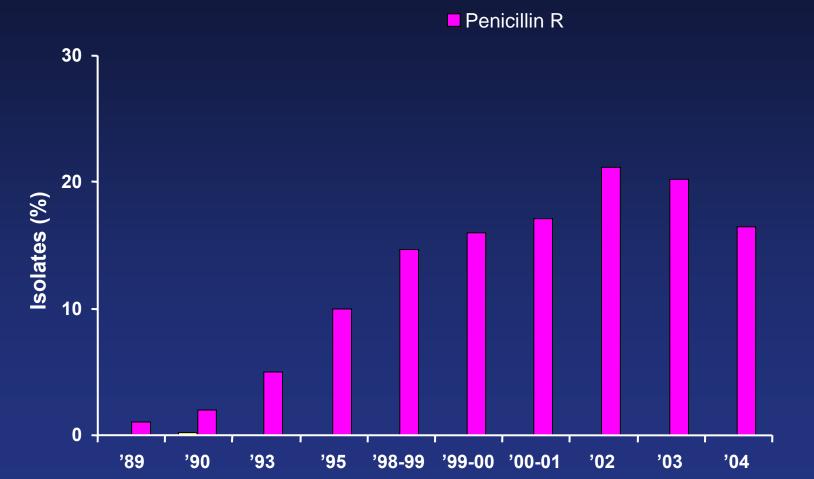
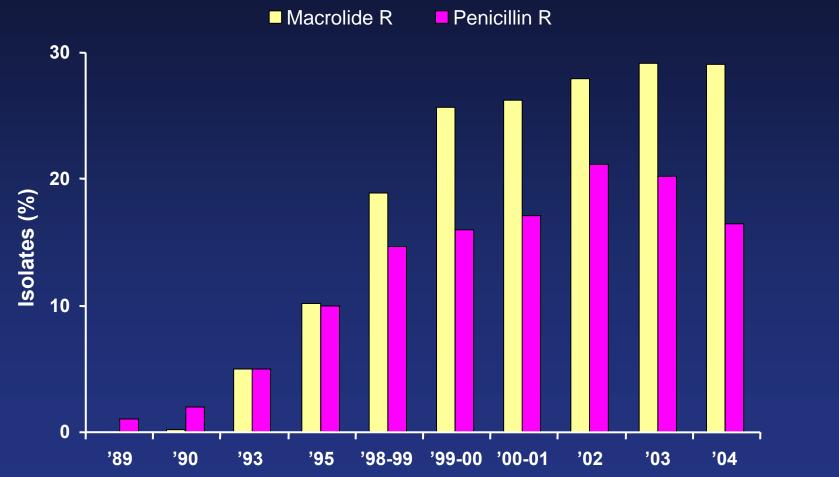
Antimicrobial Use for Respiratory Tract Infections: Needs and Consequences

Donald E. Low, MD Medical Director, Ontario Public Health Laboratory University of Toronto


Respiratory tract infections with S. pneumoniae

S. pneumoniae

- most common bacterial cause of acute maxillary sinusitis and community acquired pneumonia (CAP)
- 2nd most common bacterial cause of acute exacerbations of chronic bronchitis
- When an organism is identified in CAP:
 - 2/3s of bacteremic cases are pneumococcus
 - 2/3s of fatal CAP are caused pneumococcus

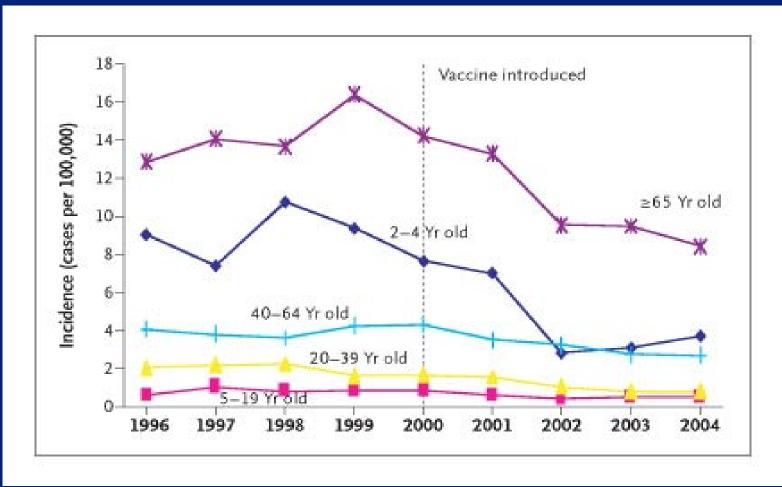

1. File TM Jr. Lancet 2003; 2. Bartlett JG, Mundy LM. NEJM 1995; 3. Guthrie R. Chest 2001; 4. Sinus and Allergy Health Partnership. Otolaryngol Head Neck Surg 2004; Bartlett et al. CID, 2000; Fine et al. JAMA, 1996.)

Penicillin and Macrolide-Resistant S. pneumoniae Emerged Rapidly in U.S.

1. Alexander Project 1992–2000. www.alexandernetwork.com; 2. Data on file (PROTEKT US Study Report 2001–2004). Aventis Pharmaceuticals. Bridgewater, NJ, USA **02-3**

Penicillin and Macrolide-Resistant S. pneumoniae Emerged Rapidly in U.S.

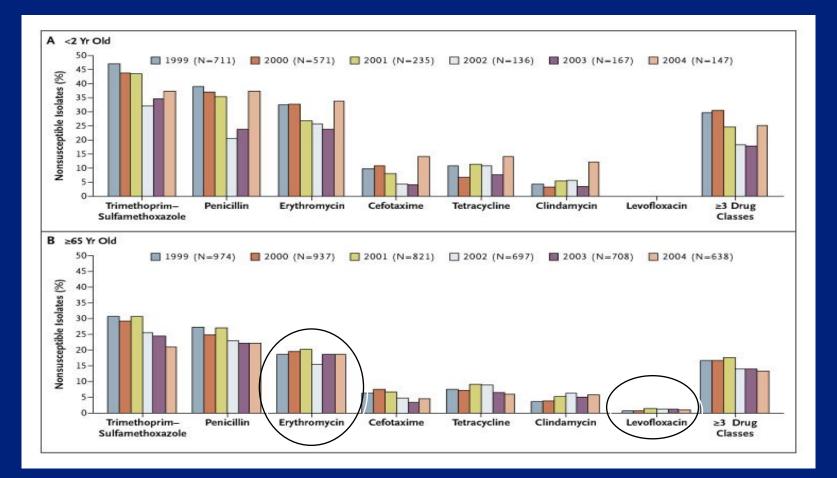
1. Alexander Project 1992–2000. www.alexandernetwork.com; 2. Data on file (PROTEKT US Study Report 2001–2004). Aventis Pharmaceuticals. Bridgewater, NJ, USA **02-4**


Growing Need for Antimicrobials for the Empirical Treatment of Possible Multi-Drug Resistant Pneumococci

n=1,817 Isolates; 44 U.S. Medical Centers, Winter 2002-2003

Antimicrobial	Percent Resistant		
Macrolides	32.9		
Clindamycin	8.6		
Tetracyclines	8.4		
Telithromycin	0		
Levofloxacin	0.7		
MDRSP	25.2		

Effect of the Pneumococcal Conjugate Vaccine on Drug-Resistant *S. pneumoniae*


Active Bacterial Core surveillance (CDC)

Kyaw et al. NEJM April 2006

Effect of the Pneumococcal Conjugate Vaccine on Drug-Resistant *S. pneumoniae*

Active Bacterial Core surveillance (CDC)

Kyaw et al. NEJM April 2006

Warning about emerging pneumococcal resistance: the emergence of multi-drug resistant of 19A

The rate of disease caused by nonsusceptible 19A, a vaccine-related serotype, increased markedly from 2.0 to 8.3 per 100,000
 19A

- Macrolide resistant (*mef* and *erm*)
- Non-susceptible to a moxicillin (MIC \geq 4 µg/ml)
- Non-susceptible to third generation cephalosporins (MIC \geq 2 $\mu g/ml)$
- Resistant to trimethoprim-sulphamethoxazole and tetracycline
- Causes invasive disease

Antimicrobial Resistance

Haemophilus influenzae

- **25% amoxicillin resistant**
- **25-30% TMP-SMX resistant**

Moraxella catarrhalis

- 98% amoxicillin resistant
- 30-40% TMP-SMX resistant

What is the evidence that resistance matters?

Why this belief by some of a "resistance paradox"?

- 1. Outcome studies are difficult to carry out
- 2. Measuring the impact of discordant therapy is difficult:
 - In the community empiric therapy
 - In the hospitalized patient multidrug therapy
 - Mortality is an insensitive measure of the impact of drug resistance
- 3. In vitro MICs do not necessarily reflect true drug levels in vivo
 - Thus, substantial numbers of clinical infections are mislabeled

Klugman KP, et al. IJAA. 2004. Metlay JP, et al. CID. 2000. Peterson LR, et al. CID. 2006

Discordant β-lactam therapy in CAP

Although there is anecdotal evidence suggesting that resistance to β-lactam causes failure in the treatment of respiratory tract infection due to *S. pneumoniae*, documentation of penicillin treatment failure, particularly with aminopenicillins administered at adequate dosages (e.g., parenterally), remains virtually nonexistent.

Discordant β-lactam therapy in CAP

Although there is anecdotal evidence suggesting that resistance to β-lactam causes failure in the treatment of respiratory tract infection due to *S. pneumoniae*, documentation of penicillin

However, *S. pneumoniae* strains with penicillin MICs >2 µg/ml were rare.

With the exception of some older cephalosporins, the PK/PD properties of most β -lactams ensure activity against the vast majority of β -lactam-susceptible, - intermediate and -resistant strains

Peterson LR Clin Infect Dis 2006;42:224-233

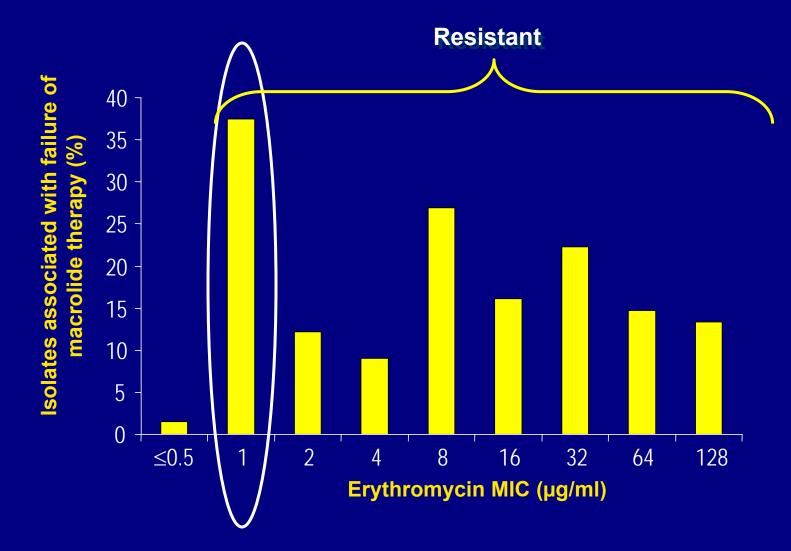
Discordant β-lactam therapy in CAP

Although there is anecdotal evidence suggesting that resistance to β-lactam causes failure in the treatment of respiratory tract infection due to *S. pneumoniae*, documentation of penicillin

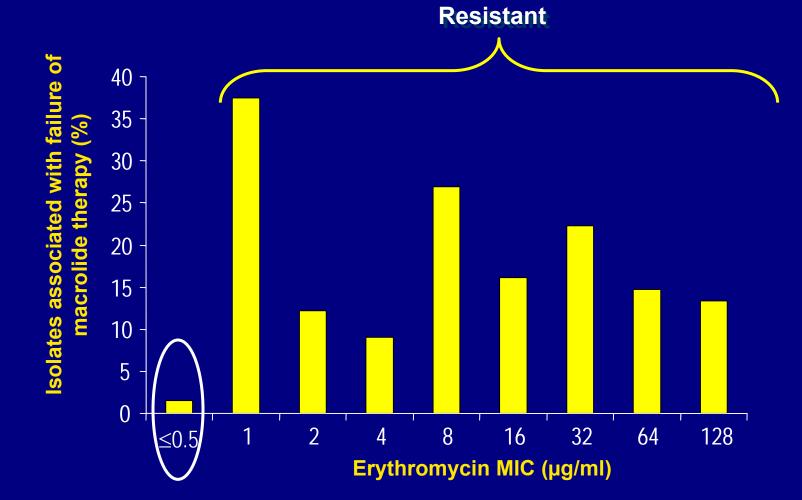
However, *S. pneumoniae* strains with penicillin MICs >2 µg/ml were rare.

With the exception of some older cephalosporins, the PK/PD properties of most β -lactams ensure activity against the vast majority of β -lactam-susceptible, - intermediate and -resistant strains

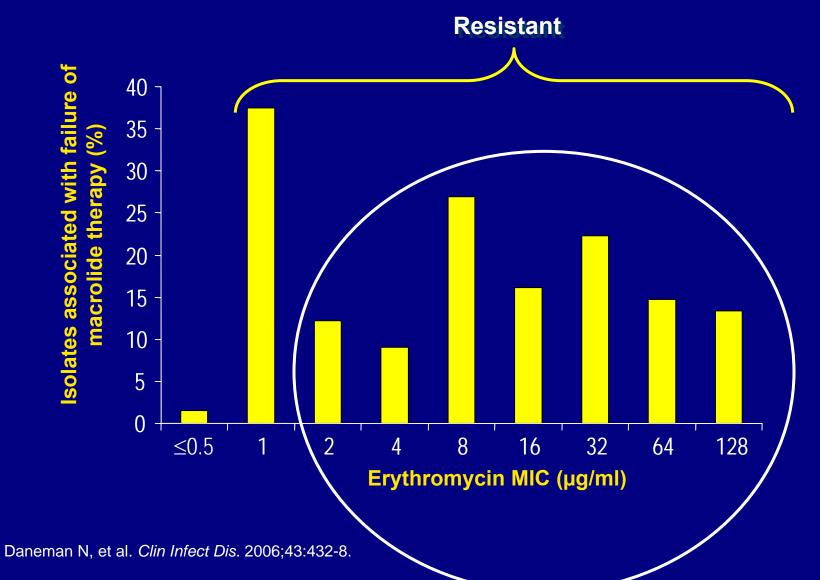
Peterson LR Clin Infect Dis 2006;42:224-233


Discordant Macrolide therapy in CAP

Fogarty C et al. *Clin Infect Dis* 2000;31:613-5
Kelley MA et al. *Clin Infect Dis* 2000;31:1008-11
Lonks J et al. *Clin Infect Dis* 2002;35:556-64
Kerkhoven DV et al. *J of Antimicrob Chem* 2003;51:691


Macrolide Resistance in Bacteremic Pneumococcal Disease: Implications for Patient Management

- Prospective population-based surveillance of pneumococcal bacteremia in Toronto between 2000 and 2004
- Macrolide failures: bacteremia occurring during treatment with outpatient macrolide antibiotics or within 2 days following treatment
- 1,696 episodes of pneumococcal bacteremia of which 60 (3.5%) were failures of outpatient macrolide therapy


Pneumococcal Blood Culture Isolates Associated with Failure of Outpatient Therapy with Erythromycin

Pneumococcal Blood Culture Isolates Associated with Failure of Outpatient Therapy with Erythromycin

Pneumococcal Blood Culture Isolates Associated with Failure of Outpatient Therapy with Erythromycin

02-19

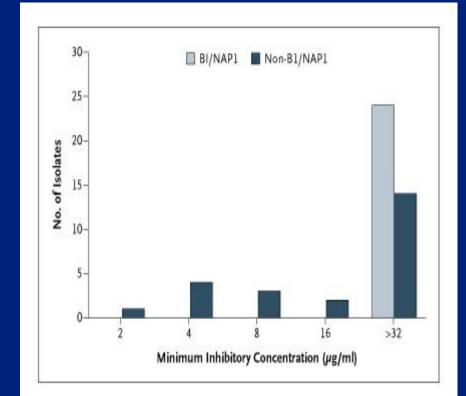
Macrolide Resistance in Breakthrough Pneumococcal Bacteremia

- Identified cases from Active Bacterial Core surveillance (CDC) sites
- Treatment failure was defined as development of bacteremia while taking a macrolide
- Of those patients that failed therapy isolates were more often resistant as compared to those that didn't fail
- They also found that failures often occur at macrolide MICs <16 µg/ml.</p>

Consequences of broad spectrum therapy

Telithromycin			
Macrolides			
Amoxicillin-clavulanate			
Fluoroquinolones			
Typicals: S. pneumoniae H. influenzae M. catarrhalis	Atypicals: <i>M. pneumonia</i> <i>C. pneumonia</i>	ae Don	Nonrespiratory tract enteric Gram-negative coverage

MDRSP = Multidrug-resistant *Streptococcus pneumoniae*.


Fluoroquinolone-Resistant Urinary Isolates of *E. coli* from Outpatients Are Frequently Multidrug Resistant: Results from the North American UTI Study

 Outpatient urine specimens at North American clinical laboratories

- 10.8% of isolates were resistant to ciprofloxacin alone¹
- Fluoroquinolone-resistant isolates of *E. coli* from urine were frequently multidrug resistant¹
- Resistance to ampicillin: 79.8%¹
- Resistance to amoxicillin/clavulanic acid 12.5%²
- Resistance to trimethoprim-sulfamethoxazole: 66.5%¹

An Epidemic, Toxin Gene–Variant Strain of *Clostridium difficile*

- A total of 187 *C. difficile* isolates were collected from 8 health care facilities in 6 states in which outbreaks of *C. difficile*-associated disease had occurred between 2000 and 2003
- Epidemic strain (BI/NAP1) positive for binary toxin, was resistant to fluoroquinolones
- Produced 16 to 23 times more toxins A and B in vitro than did other strains

Fluoroquinolone MICs

MacDonald et al. NEJM Dec, 2005

02-23

Conclusions

RTIs are a frequent cause of disease in the community

- S. pneumoniae is the most common bacterial pathogen and the one associated with the greatest morbidity and mortality
- Relevance of resistance is now better established for some classes of antimicrobials including the macrolides
- The use of broad-spectrum agents for the treatment of community-acquired RTIs may not only result in resistance in bystander organisms but may also be related to the increase of antibiotic-associated colitis
- There is a need for antibiotics with efficacy against resistant pathogens and targeted anti-bacterial spectrum