

USDA, National Agricultural Statistics Service Indiana Crop & Weather Report

USDA, NASS, Indiana Field Office 1435 Win Hentschel Blvd.

Suite 110 West Lafayette, IN 47906-4145 (765) 494-8371 nass-in@nass.usda.gov

> Released: June 2, 2008 Vol. 58, WC060208

CROP REPORT FOR WEEK ENDING JUNE 1

AGRICULTURAL SUMMARY

Planting made good progress during the week until heavy rains Friday night halted field work in some central and southern portions of the state, according to the Indiana Field Office of USDA's National Agricultural Statistics Service. Many farmers were also replanting corn and soybeans during the week due to poor emergence in early planted crops. First cutting of hay crops has been difficult thus far this season.

FIELD CROPS REPORT

There were 4.5 days suitable for field work. Eighty-eight percent of the intended **corn** acreage has been **planted** compared with 100 percent last year and 95 percent for the 5-year average. By area, 96 percent has been planted in the north, 94 percent in the central region, and 63 percent in the south. Sixty-nine percent of the corn acreage has now emerged compared with 94 percent last year and 86 percent for the 5-year average. Sixty-one percent of the intended soybean acreage has been planted compared with 94 percent last year and 80 percent for the 5-year average. By area, 80 percent has been planted in the north, 63 percent in the central region, and 22 percent in the south. Twenty-eight percent of the soybean acreage has now emerged compared with 75 percent for last year and 61 for the 5-year average.

Ninety percent of the winter wheat is **headed** compared with 93 percent last year and 95 percent for the 5-year average. Winter wheat **condition** is rated 74 percent good to excellent compared to 36 percent last year at this time.

Major activities during the week included: applying nitrogen to corn, spraying herbicides, cutting and baling hay, equipment maintenance, hauling grain to market, hauling manure, and taking care of livestock.

LIVESTOCK, PASTURE AND RANGE REPORT

Pasture condition is rated 22% excellent, 44% good, 27% fair, 6% poor and 1% very poor. Livestock remain in mostly good condition.

CROP PROGRESS TABLE

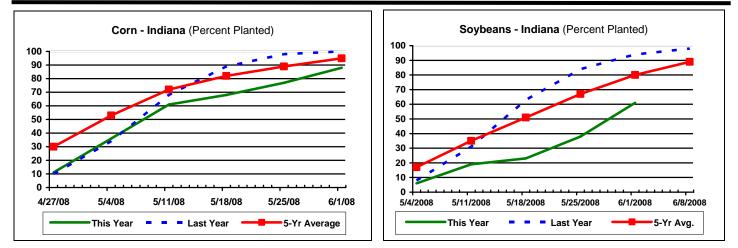
	This	Last	1	F Veen			
Crop	This		Last	5-Year			
orop	Week	Week	Year	Avg			
	Percent						
Corn Planted	88	77	100	95			
Corn Emerged	69	54	94	86			
Soybeans Planted	61	38	94	80			
Soybeans Emerged	28	10	75	61			
Winter Wheat Headed	90	61	93	95			
Alfalfa – 1st Cutting	32	NA	68	42			

CROP CONDITION TABLE

Crop	Very Poor	Poor	Fair	Good	Excel- lent	
	Percent					
Corn	3	8	32	48	9	
Winter Wheat	1	4	21	52	22	
Pasture	1	6	27	44	22	

SOIL MOISTURE & DAYS SUITABLE FOR FIELDWORK TABLE

	This Week	Last Week	Last Year
		Percent	
Topsoil			
Very Short	0	0	15
Short	2	1	41
Adequate	68	58	43
Surplus	30	41	1
Subsoil			
Very Short	0	0	7
Short	2	1	30
Adequate	68	60	62
Surplus	30	39	1
Days Suitable Contact INFORMATION	4.5	3.0	6.4


--Greg Preston, Director

--Andy Higgins, Agricultural Statistician

E-Mail Address: nass-in@nass.usda.gov

http://www.nass.usda.gov/Statistics by State/Indiana/

Crop Progress

Other Agricultural Comments And News

More Thoughts on Late Corn Planting

Indiana remains a distant light at the end of a wet tunnel. based on expected heat unit needs and a "normal" Planting progress as of 18 May was reported to be 68% accumulation of heat units from planting to a killing fall frost complete statewide, but only 37% complete throughout date. See my earlier article (Nielsen, 2008b) for more detail southern Indiana (USDA-NASS, 19 May). Reports are coming in that some of the earlier planted corn is being replanted or may require so in the near future because of unacceptable stand establishment due to damage from soggy soils, soil-borne insect damage, or seedling blight damage. Obviously, the calendar continues to move on or, in the memorable words of John Wayne, "we're burnin' daylight."

Slow drying soils due to cool weather plus additional rainfall that spread throughout much of the state on Friday probably translate to little significant planting progress since the 18 May estimate. While we know from experience that much of the remaining corn acres could be planted in a week's worth of good working days, the upshot is that quite a few acres will either be planted very late or those acres will be switched over to soybeans.

Yield Potential of Late-Planted Corn

Ah, yes.....the \$6 per bushel question is how much yield loss should I expect if I continue to plant corn through the early weeks of June? One of the most cited references for that answer is the dataset from the Univ of Illinois that we reproduce in Purdue's ID-179 (Corn and Soybean Guide) and can be viewed at: http://extension.entm.Purdue.edu/ pestcrop/2008/issue9/PandC9.pdf, pages 3 - 5. Based on that dataset, we can speculate that corn yield potential decreases significantly with late May and early June plantings. As I've indicated before though (Nielsen, 2008a), these estimates are relative to the yield potential of a given year. If the remainder of this growing season turns out to be fantastic for corn, the percent yields listed in the table may yet result in acceptable actual bushel yields. If, however, the remainder of this growing season continues to be a sorry mess for corn, then the percent yield losses listed in the table on page 4 will translate to even sorrier actual bushel yields this fall.

Hybrid Maturity for Late-Planted Corn

Growers who intend on "sticking to their guns" with corn acres should be talking with their seed dealers now about possible switches to earlier maturity hybrids, especially those who farm in northern or eastcentral Indiana. The (which accompanying table can be viewed at:http://extension.entm.purdue.edu/pestcrop/2008/issue9/ PandC9.pdf, pages 4 & 5) lists relative hybrid maturities

Completion of the 2008 corn planting season throughout that could safely be planted over the next three weeks on how these hybrid maturity recommendations are developed.

> The good news, if there is any, is that growers in southern Indiana could continue planting adapted full-season hybrids through the middle of June with little if any risk of the crop not maturing prior to a killing fall frost. Today's reality is that "full-season" hybrids for many southern Indiana growers are earlier maturity than those listed in the accompanying table. Plant breeders have made such improvements in the yield potential of 110 - 115 day hybrids over the past decade that many growers take advantage of their excellent yield potential and drier grain versus later maturity hybrids.

Tip: Growers who elect to switch to earlier maturity hybrids should consider using hybrids with the Bt-corn borer trait, especially in southern Indiana. European and southwestern corn borers are especially attracted to late-planted corn. See John Obermeyer's recent newsletter article (Obermeyer, 2008).

Another Tip: Growers who elect to switch to earlier maturity hybrids should pay close attention to choosing hybrids with excellent disease resistance and general late-season plant health or standability characteristics.

Seeding Rates for Late-Planted Corn

The only consideration for seeding rate decisions and late planted corn is that growers may want to reduce their seeding rate just a tad. Optimal final stands for lateplanted corn are similar to those for earlier-planted corn (see the planting date/population table on page 4). BUT recommended seeding rates for earlier-planted corn are calculated assuming that 5 to 10% of the seed either will not germinate or subsequent seedlings will die due to typical wet, cold, and otherwise crappy early season conditions. One of the few positive aspects of late-planted corn is that stand establishment should be more successful due to warmer soils and more rapid germination/emergence conditions. So, instead of bumping seeding rates by roughly 10% as we suggest for earlier-planted corn, growers could back off to seeding rates that are equal to or 5% above their target final populations.

Seeding Depth for Late-Planted Corn

The key factor for selecting seeding depth for late-planted corn is uniformity of seedbed moisture for germination. One

	_Pa	st W	eek	Weath	ier Sumr	nary I	Accumulation					
									April 1	1, 200)8 thru	
Station	Air			Avg Precip. 4 in		June 1, 2008						
	Temperature		4 in			Preci	pitatio		GDD Base 50°F			
				i i			Soil		-			
	Hi	Lo	Avq	DFN	Total	Days	Temp	Total	DFN	Days	Total	DFN
Northwest (1)		1									I	
Chalmers_5W	86	46	63	-5	2.62	2		7.65	-0.02	23	332	-204
Francesville	84	40	62	-4	1.38	2		6.11	-1.25	24	342	-129
Valparaiso_AP_I	80	40	62	-4	0.53	3		3.77	-4.20	19	366	-79
Wanatah	82	41	61	-4	0.74	3	63	6.15	-1.42	25	309	-87
Winamac	82	41	62	-4	1.38	3	63	6.74	-0.62	24	349	-122
North Central(2)								I				
Plymouth	81	40	63	-4	1.44	3		7.57	-0.23	25	340	-155
South_Bend	82	39	62	-2	0.34	1		5.68	-1.48	22	385	-38
Young_America	84	43	64	-2	1.36	2		9.47	+2.11	22	378	-90
Northeast (3)								I				
Columbia City	82	39	62	-3	1.01	2	54	7.02	-0.27	25	344	-51
Fort_Wayne	83	40	65	+0	2.32	3		7.43	+0.49	26	415	-32
West Central(4)							'	I				
Greencastle	83	43	63	-6	0.85	3		10.28	+1.72	25	357	-228
Perrysville	88	45	65	-2	2.26	3	65	9.18	+1.11	26	439	-80
Spencer_Ag	84	44	64	-3	0.43	2		9.89	+0.93	23	397	-124
Terre_Haute_AFB	85	44	67	-2	0.76	2		7.11	-1.37	19	489	-90
W_Lafayette_6NW	88	42	64	-2	1.78	3	63	8.90	+1.17	30	392	-82
Central (5)								•				
Eagle_Creek_AP	84	46	67	-1	2.85	3		10.64	+2.83	28	511	-57
Greenfield	84	44	65	-2	2.96	3		10.86	+2.44	31	410	-111
Indianapolis_AP	85	47	68	+1	0.87	2		7.67	-0.14	25	542	-26
Indianapolis_SE	84	44	65	-3	0.98	3		7.12	-1.15	27	410	-136
Tipton_Ag	85	42	65	-1	0.45	3	67	8.14	+0.30	30	366	-69
East Central (6)												
Farmland	85	40	63	-2	0.17	3	64	6.98	-0.54	28	345	-75
New_Castle	85	42	64	-1	1.61	2		8.27	-0.38	28	366	-67
Southwest (7)												
Evansville	87	52	72	+3	4.60	5		14.11	+5.22	25	674	-60
Freelandville	86	50	67	-2	0.69	5		12.44	+3.38	27	520	-90
Shoals_8S	88	43	66	-1	1.16	4		14.31	+4.80	27	458	-129
Stendal	86	50	69	+0	0.95	5		13.75	+3.96	30	608	-58
Vincennes_5NE	88	51	69	+2	0.61	3		12.06	+3.00	23	561	-49
South Central (8)											
Leavenworth	86	49	69	+3	0.48	5		11.88	+2.36	35	595	+2
Oolitic	84	45	66	-2	1.24	2	67	14.56	+5.60	29	428	-112
Tell_City	86	51	70	+2	1.47	4		13.23	+3.52	27	651	-31
Southeast (9)												
Brookville	85	44	65	-1	0.97	2		9.80	+1.18	29	462	-16
Greensburg	84	44	67	+2	0.19	1		9.14	+0.16	27	505	-23
Scottsburg	90	49	69	+1	1.03	3		10.76	+2.01	29	563	-50

Week ending Sunday June 1, 2008

DFN = Departure From Normal (Using 1961-90 Normals Period).

GDD = Growing Degree Days.

Precipitation (Rainfall or melted snow/ice) in inches.

Precipitation Days = Days with precip of .01 inch or more.

Air Temperatures in Degrees Fahrenheit.

Copyright 2008 Agricultural Weather Information Service, Inc. All rights reserved.

The above weather information is provided by AWIS, Inc. For detailed ag weather forecasts and data visit the AWIS home page at <u>www.awis.com</u>

More Tho	oughts on	Late Corn	Planting	(Continued)
----------	-----------	-----------	----------	-------------

Plant- ing Date		Plant Population (Final) Per Acre													
	10,000	12,000	14,000	16,000	18,000	20,000	22,000	24,000	26,000	28,000	30,000	32,000	34,000	36,000	
	Percent Of Optimum Yield														
10-Apr	62	68	73	78	82	85	88	91	92	93	94	94	93	91	
15-Apr	65	71	76	81	85	88	91	94	95	96	97	96	96	94	
20-Apr	67	73	79	83	87	90	93	96	97	98	99	98	98	96	
25-Apr	68	74	79	84	88	92	94	97	98	99	100	100	99	97	
30-Apr	68	74	79	84	88	92	95	97	99	100	100	100	99	97	
5-May	67	73	79	83	87	91	94	96	98	99	99	99	98	97	
10-May	65	71	77	82	86	89	92	94	96	97	97	97	96	95	
15-May	63	69	74	79	83	87	89	92	93	94	95	95	94	92	
20-May	59	65	61	65	80	83	86	88	90	91	91	91	90	89	
25-May	55	61	66	71	75	79	81	84	85	86	87	87	86	84	
30-May	49	55	61	65	70	73	76	78	80	81	81	81	80	79	
4-Jun	43	49	54	59	63	67	70	72	74	75	75	75	74	73	
9-Jun	36	42	47	52	56	60	62	65	66	67	68	68	67	65	

Source: Nafziger. 1994. J. Prod. Ag 7:59-62. yield response to planting date extrapolated beyond May 25 with concurrence of author. Note: The highlighted area represents the optinum ranges (98 to 100% yield) of plant populations and planting dates for productivity levels greater than about 125 bushels per acre. Optimum plant populations for soils with historical yields less than about 100 bushels per acre will likely not respond to final plant populations greater than about 24,000 plants per acre. (*R.L. Nielsen, Purdue Agronomy*)

of the risks of later planted corn is that the seed zone can dry out much more quickly than it usually does with earlier-planted corn. Check the seedbed moisture conditions the day you plant and give some credence to the 6 to 10 day rainfall forecast. Aim for a seeding depth that will best ensure uniform soil moisture, but do not plant any shallower than 1.5 inches.

Starter Fertilizer for Late-Planted Corn

Whether or not starter fertilizer will "pay off" with late planting is often not easy to predict. However, given that the benefits of starter fertilizer are most evident when the first 30 to 45 days after planting are wet, cold, and otherwise crappy, one could argue that there may not be much reason to use starter fertilizer for late-planted corn. The high cost of many starter fertilizer sources this year may also influence this decision.

Related References

Lee, Chad. 2008. Late Corn Planting Dates and Potential Yields. Univ. of Kentucky. [On-line]. Available at http://www.uky.edu/Ag/GrainCrops/Briefs/Corn_Late Planting2008.htm>. [URL accessed 5/23/08].

Nielsen, R.L. (Bob). 2008a. Corn Planting Date is Important, But... Corny News Network, Purdue Extension. [On-line]. Available at URL: <<u>http://www.kingcorn.org/news/articles.08/PltDate-0412.html</u>>. [URL accessed 5/23/08]. Nielsen, R.L. (Bob). 2008b. Late Planting/Replanting & Relative Hybrid Maturity. Corny News Network, Purdue Extension. [On-line]. Available at URL: http://www.kingcorn.org/news/articles.08/DelayedPlt_Hybrids.html. [URL accessed 5/23/08].

Obermeyer, John. 2008. Consider Corn Borer-Bt for Late-Planted Corn in Southern Indiana Pest & Crop Newsletter (16 May), Purdue Extension. [On-line]. Available at <http://extension.entm.purdue.edu/pestcrop/2008/issue7 /index.html>. [URL accessed 5/23/08].

Thomison, Peter. 2008. Should Seeding Rates be Changed for Delayed Corn Plantings?. C.O.R.N. Newsletter (20 May), Ohio State Extension. [On-line]. Available at <<u>http://corn.osu.edu/index.php?setissue</u> ID=229>. [URL accessed 5/23/08].

USDA-NASS. 2008. Indiana Crop & Weather Report (19 May 2008). Indiana office of USDA's National Ag. Statistics Service. [On-line]. Available at <<u>http://www.nass.usda.gov/</u> Statistics_by_State/Indiana/Publications/Crop_Progress_ &_Condition/2008/wc051908.pdf>. [URL accessed 5/23/08].

Bob Nielsen, Department of Agronomy, Purdue University, West Lafayette, IN.

The INDIANA CROP & WEATHER REPORT (USPS 675-770), (ISSN 0442-817X) is issued weekly April through November by the USDA, NASS, Indiana Field Office, 1435 Win Hentschel Blvd, Suite 110, West Lafayette IN 47906-4145. Periodicals/Second Class postage paid at Lafayette IN. For information on subscribing, send request to above address. POSTMASTER: Send address change to the USDA, NASS, Indiana Field Office, 1435 Win Hentschel Blvd, Suite 110, West Lafayette IN 47906-4145.