

United States
Department of
Agriculture

Cooperative State Research, Education, and Extension Service

National Research Initiative Competitive Grants Program

2004 No. 8

Guoyao Wu, Fuller W. Bazer, Timothy A. Cudd, Cynthia J. Meininger, and Thomas E. Spencer. September 2004. "Maternal Nutrition and Fetal Development". **Journal of Nutrition**. 134(9): 2169-2172

uboptimal nutrition during gestation is a significant problem in animal agriculture. For example, nutrient uptake by ewes grazing in the western United States is less than 50 percent of the National Research Council's recommended

Cover Stories:

Major Scientific Publications Featuring NRI-funded Research

THE JOURNAL OF NUTRITION

September 2004

Volume 134 No. 9

SSN-0022-3166

Official Publication

American Society for Nutritional Sciences
Published online at www.nutrition.org

Issue Highlights:

Review-Maternal nutrition and fetal development

Nutritional regulation of SREBP-1 in chickens

Diurnal rhythm of intestinal transporters in food-deprived, refed and schedule-fed rats

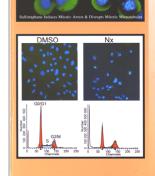
Biotin supplementation and occurrence of single-stranded DNA breaks
Sulforaphane inhibits mammary cancer cell mitosis and

tubulin polymerization
Gastrointestinal epoxide-furanoid rearrangement

of neoxanthin

Up-regulation of VEGF by $1\alpha,25$ -dihydroxycholecalciferol in mouse fibroblasts

In vivo imaging of intra-gastric gelation and its effects on satiety


Hyperphagia, body composition and protein-energy balance in HIV-infected asymptomatic men

Maturation of visual acuity in breast-fed term infants fed DHA-enriched egg yolk

Phenolic compounds in olive oil and oxidative/antioxidative status in men

Household food insecurity associated with adult health status Maternal adaptive immunity and the intestinal microflora of suckling mice

Symposium-Nutrition and gene regulation

requirement. Grazing ewes that do not receive Cover reprinted with permission by The American Society for Nutritional Sciences

supplemental nutrition lose a significant amount of body weight during pregnancy, thereby seriously compromising their health, the growth of their fetuses, and postpartum milk production. In pigs, a disproportionate supply of nutrients along the length of the uterus results in 15-20 percent of piglets with low-birth-weight whose postnatal survival and growth rates are severely reduced. Moreover, nutrient restriction during critical periods of embryonic and fetal development may impair growth and health throughout postnatal life and perhaps even into the next generation. This may indicate that poor performance of livestock during postnatal growth may be a consequence of fetal growth restriction. Using funding support from the NRI, Dr. Wu and co-workers at Texas A&M University discovered an unusual abundance of specific amino acids (the building blocks of protein) in the fetuses of pregnant pigs and sheep. Some of these amino acids can account for more than 50 percent of the total amino acids present during various periods of gestation. One of them is used extensively by the fetal pig for growth, while the placenta uses another to support maximal development. Most recently, Dr. Wu's research team found that arginine, an essential amino acid, is particularly rich in placental fluid at early gestation. The high concentrations of the argininefamily amino acids in the conceptus are associated with the highest rates of conceptus growth during pregnancy. Results from this work will contribute to an improved understanding of the mechanisms regulating conceptus growth and development. This will be beneficial for developing new management strategies to prevent or treat intrauterine growth retardation in agriculturally important animals and improve pregnancy outcome in humans as well.