Skip Navigation
NASA Logo - Jet Propulsion Laboratory    + View the NASA Portal      
JPL Home Earth Solar System Stars & Galaxies Technology
Basics of Space Flight
Basics GUIDE INDEX GLOSSARY UNITS OF MEASURE LINKS
JPL NASA Caltech
 


Chapter 11. Typical Onboard Systems


Objectives:
Upon completion of this chapter you will be able to describe the role of typical spacecraft subsystems: structural, thermal, mechanical devices, data handling, attitude and articulation control, telecommunications, electrical power and distribution, and propulsion. You will be able to list advanced technologies being considered for use on future spacecraft.

Systems, Subsystems, and Assemblies

SYSTEM

SUBSYSTEM

ASSEMBLY

SUBSYSTEM

ASSEMBLY

ASSEMBLY

One might expect a system to comprise subsystems, and subsystems to contain assemblies as in the ideal hierarchy illustrated at right. For example, a spacecraft, also called a flight system (to differentiate it from the ground system), might contain a dozen subsystems including an attitude control subsystem, which itself might contain dozens of assemblies including for example three or four reaction wheel assemblies, celestial reference assemblies, and inertial reference assemblies, etc.

But all too often system and subsystem are used arbitrarily. In some usage a single system may comprise subsystems both aboard a spacecraft and on the ground, for example a telecommunications system with transmitter and receiver subsystems on both spacecraft and Earth. In other usage, as if to ensure permanent confusion of terms, frequently an instrument is named a subsystem, but it may contain lens systems, and so on.

Individual spacecraft can be very different from one another, and they can display different approaches to solving similar problems. Newer spacecraft are smaller and less massive than their predecessors, yet there are common functions carried out by spacecraft regardless how massive or miniature.

Not all classifications of spacecraft have the same subsystems, though. An atmospheric probe spacecraft, for example, may lack propulsion and attitude control subsystems entirely. The discussions in this chapter mainly address subsystems that satisfy the requirements typical of complex flyby- or orbiter-class spacecraft, and in this way cover most simpler classes of spacecraft as well.

Subsystems discussed in this chapter include:

Convenient Illustrations

Illustration thumbnail You may find it helpful to have this reference diagram available in a separate window as you proceed through this chapter and the next. The large (140 kbyte) illustration calls upon the Galileo Jupiter orbiter and atmospheric probe spacecraft to show many components of the typical on-board systems, subsystems, and assemblies discussed in the text. In the illustration, red lines point to engineering subsystems and assemblies, connecting them with explanatory paragraphs written in plain type font. Blue lines point to science instruments, connecting them with explanatory paragraphs written in italic font within the illustration. To bring up a separate window containing the large illustration, click the thumbnail image.

For additional reference, see the subsystem and instrument callouts for the Cassini/Huygens spacecraft.

Structure Subsystem

Stardust Spacecraft Bus

STARDUST SPACECRAFT BUS

The Structure subsystem provides overall mechanical integrity of the spacecraft. It must ensure that all spacecraft components are supported, and that they can withstand handling and launch loads as well as flight in freefall and during operation of propulsive components.

The spacecraft bus is a major part of a spacecraft's structure subsystem. It provides a place to attach components internally and externally, and to house delicate modules requiring the protection of an environment with a measure of thermal and mechanical stability. It can provide an integral card chassis for supporting circuit boards of radio equipment, data recorders, and computers. It supports gyroscopes, reaction wheels, cables, plumbing, and many other components. The bus also influences the basic geometry of the spacecraft, and it provides the attachment points for other parts of the structure subsystem such as booms, antennas, and scan platforms. It also provides points that allow holding and moving the spacecraft during construction, testing, transportation, and launch.

A magnetometer boom appendage is typically the longest component of the structure subsystem on a spacecraft, although since it is deployable, it may fall under the aegis of the mechanical devices subsystem discussed below. Since magnetometers (discussed in Chapter 12) are sensitive to electric currents near the spacecraft bus, they are placed at the greatest practical distance from them on a boom. The Voyager magnetometers are mounted 6 and 13 meters out the boom from the spacecraft bus. At launch, the mag boom, constructed of thin, non-metallic rods, is typically collapsed very compactly into a protective canister. Once deployed in flight, it cannot be retracted.

Data Handling Subsystems

Some of today's science instruments, or other subsystems, may easily have more embedded computing power than an entire Voyager spacecraft has. But there is usually one computer identified as the "spacecraft central" computer responsible for overall management of a spacecraft's activity. It is typically the same one which maintains timing, interprets commands from Earth, collects, processes, and formats the telemetry data to be returned to Earth, and manages high-level fault protection and safing routines. On some spacecraft, this computer is referred to as the command and data subsystem (CDS). For convenience, that term will be used here, recognizing that other names may apply to similar subsystems or sets of subsystems which accomplish some or all of the same tasks.
  • Sequence Storage

    A portion of the CDS memory is managed as storage space for command sequences and programs uplinked from Earth that control the spacecraft's activities over a period of time. After use, these sequences and programs can be repeatedly overwritten with new ones to maintain optimum control of the spacecraft. These sequence loads are typically created by the project's planning and sequencing teams by negotiating and incorporating inputs from the spacecraft team, the science teams, and others.

  • Spacecraft Clock

    As mentioned in Chapter 2, the spacecraft clock (SCLK, pronounced "sklock") is typically a counter maintained by CDS. It meters the passing of time during the life of the spacecraft. Nearly all activity within the spacecraft systems is regulated by the SCLK (an exception is realtime commands). The spacecraft clock may be very simple, incrementing every second and bumping its value up by one, or it may be more complex, with several main and subordinate fields that can track and control activity at multiple granularities. The SCLK on the Ulysses spacecraft, for instance, was designed to increment its single field by one count every two seconds. The Galileo and Magellan clocks, on the other hand, were designed as four fields of increasing resolution. Many types of commands uplinked to the spacecraft are set to begin execution at specific SCLK counts. In telemetry, SCLK counts that indicate data creation time mark engineering and science data whether it goes to the onboard storage device, or directly onto the downlink. The presence of SCLK in telemetry facilitates processing, storage, retrieval, distribution, and analysis.

 
EVENT DESCRIPTION

SCET

S/C CLOCK

EXECUTE BOTH CAMERAS COMMAND ID: 450 335 13:28:45 1354282800:204
EXECUTE UV IMAGING SPECTROMETER OBSERVATION 335 13:28:45 1354282800:207
Excerpt from Cassini Sequence of Events during Jupiter phase December 2000. SCLK values for two commands appears next to their equivalent SCET times.




previous page PRECEDING PAGE   |   NEXT PAGE next page

Skip Navigation
HOME   |   GUIDE   |   INDEX   |   GLOSSARY   |   UNITS OF MEASURE   |   LINKS

  SECTION I  
ENVIRONMENT
1 The Solar System
2 Reference Systems
3 Gravity & Mechanics
4 Trajectories
5 Planetary Orbits
6 Electromagnetics

SECTION II
FLIGHT PROJECTS
7 Mission Inception
8 Experiments
9 S/C Classification
10 Telecommunications
11 Onboard Systems
12 Science Instruments
13 Navigation

SECTION III
FLIGHT OPERATIONS
14 Launch
15 Cruise
16 Encounter
17 Extended Operations
18 Deep Space Network

 
NASA portal  


Basics of Space Flight
Site Manager: Dave Doody
Webmaster: Diane Fisher