PURPOSE

Compute the standard uniform sparsity function.

DESCRIPTION

The standard uniform probability density function is:

f(x) = 1 for $0 \le x \le 1$ (EQ 8-344)

<SUBSET/EXCEPT/FOR qualification>

The standard uniform sparsity function is:

$$sf(p) = 1$$
 (EQ 8-345)

The input value is a real number between 0 and 1.

SYNTAX

LET <y2> = UNISF(<y1>)

where $\langle y 1 \rangle$ is a variable, a number, or a parameter in the range 0 to 1;

 $\langle y2 \rangle$ is a variable or a parameter (depending on what $\langle y1 \rangle$ is) where the computed uniform ppf value is stored; and where the $\langle SUBSET/EXCEPT/FOR$ qualification \rangle is optional.

EXAMPLES

LET A = UNISF(0.9)LET Y = UNISF(P)

NOTE

The general uniform probability density function is:

 $f(x) = \frac{1}{(b-a)}$ for $a \le x \le b$ (EQ 8-346)

where a and b are the lower and upper limits of the range respectively. The location parameter is a and the scale parameter is (b-a). The general uniform sparsity function is:

$$sf(p) = (b-a)$$
 (EQ 8-347)

See topic (3) under the General considerations section at the beginning of this chapter for a discussion of generating sparsity function values for the general form of the distribution.

DEFAULT

None

SYNONYMS

None

RELATED COMMANDS

UNICDF	=	Compute the uniform cumulative distribution function.
UNIPDF	=	Compute the uniform probability density function.
UNIPPF	=	Compute the uniform percent point function.
NORCDF	=	Compute the normal cumulative distribution function.
NORPDF	=	Compute the normal probability density function.
NORPPF	=	Compute the normal percent point function.
SEMCDF	=	Compute the semi-circular cumulative distribution function.
SEMPDF	=	Compute the semi-circular probability density function.
SEMPPF	=	Compute the semi-circular percent point function.

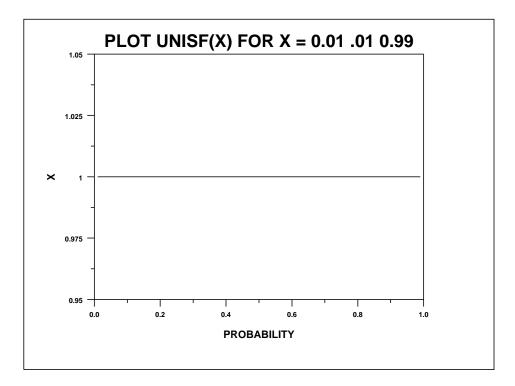
REFERENCE

"Continuous Univariate Distributions - 2," Johnson and Kotz, Houghton Mifflin, 1970 (chapter 25).

"Statistical Distributions," 2nd. Edition, Evans, Hastings, and Peacock, John Wiley and Sons (chapter 35).

8-227

APPLICATIONS


Data Analysis

IMPLEMENTATION DATE

94/4

PROGRAM

XLIMITS 0 1 MAJOR XTIC NUMBER 6 MINOR XTIC NUMBER 1 XTIC DECIMAL 1 TITLE AUTOMATIC X1LABEL PROBABILITY Y1LABEL X PLOT UNISF(X) FOR X = 0.01 .01 0.99

