NORPPF

PURPOSE

Compute the standard normal (i.e, mean=0, sd=1) percent point function.

DESCRIPTION

The standard form of the normal probability density function is:

 $f(x) = \left(\frac{1}{\sqrt{2\pi}}\right)e^{-\frac{x^2}{2}}$ (EQ 8-289)

The percent point function for the normal distribution does not have a simple closed form. It is calculated numerically. The input value is a real number between 0 and 1.

SYNTAX

LET <y2> = NORPPF(<y1>)

(1>) <SUBSET/EXCEPT/FOR qualification>

where $\langle y 1 \rangle$ is a variable, a number, or a parameter in the range 0 to 1;

 $\langle y2 \rangle$ is a variable or a parameter (depending on what $\langle y1 \rangle$ is) where the computed normal ppf value is stored; and where the $\langle SUBSET/EXCEPT/FOR$ qualification \rangle is optional.

EXAMPLES

LET A = NORPPF(0.9) LET Y = NORPPF(P)

NOTE

The general form of the normal distribution has the following probability density function:

 $f(x) = \left(\frac{1}{\sigma\sqrt{2\pi}}\right)e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$ (EQ 8-290)

where μ is the location parameter and σ is the scale parameter. See topic (3) under the General considerations section at the beginning of this chapter for a discussion of generating ppf values for the general form of the distribution. The mean is μ and the standard deviation is σ .

DEFAULT

None

SYNONYMS

None

RELATED COMMANDS

NORCDF	=	Compute the normal cumulative distribution function.
NORPDF	=	Compute the normal probability density function.
NORSF	=	Compute the normal sparsity function.
HFNPDF	=	Compute the half-normal cumulative distribution function.
HFNPDF	=	Compute the half-normal probability density function.
HFNPPF	=	Compute the half-normal percent point function.
LGNPDF	=	Compute the lognormal cumulative distribution function.
LGNPDF	=	Compute the lognormal probability density function.
LGNPPF	=	Compute the lognormal percent point function.
CHSCDF	=	Compute the chi-square cumulative distribution function.
CHSPDF	=	Compute the chi-square probability density function.
CHSPPF	=	Compute the chi-square percent point function.
FCDF	=	Compute the F cumulative distribution function.
FPDF	=	Compute the F probability density function.
FPPF	=	Compute the F percent point function.

TCDF	=	Compute the T cumulative distribution function.
TPDF	=	Compute the T probability density function.
TPPF	=	Compute the T percent point function.

REFERENCE

"Continuous Univariate Distributions - 1," Johnson and Kotz, Houghton Mifflin, 1970 (chapter 13).

"Handbook of Mathematical Functions, Applied Mathematics Series, Vol. 55," Abramowitz and Stegum, National Bureau of Standards, 1964 (page 946-947).

APPLICATIONS

Data Analysis, Hypothesis Testing

IMPLEMENTATION DATE

Pre-1987

PROGRAM

TITLE AUTOMATIC X1LABEL PROBABILITY Y1LABEL X XLIMITS 0 1 MAJOR XTIC NUMBER 6 MINOR XTIC NUMBER 1 XTIC DECIMAL 1 PLOT NORPPF(X) FOR X = 0.01 .01 0.99

