# GAMPDF

## PURPOSE

Compute the standard form of the gamma probability density function.

## DESCRIPTION

The standard form of the gamma probability density function is:

 $f(x) = \frac{x^{(\gamma-1)}e^{(-x)}}{\Gamma(\gamma)}$  for  $x \ge 0$  (EQ 8-219)

where  $\gamma$  is a positive number that is the shape parameter and  $\Gamma$  is the standard gamma function. The mean and standard deviation of the standard gamma distribution are  $\gamma$  and sqrt( $\gamma$ ) respectively. The input value can be any non-negative real number.

#### SYNTAX

LET <y2> = GAMPDF(<y1>,<gamma>) <SUBSET/EXCEPT/FOR qualification>

where *<*y1*>* is a positive number, a number, or a variable;

 $\langle y2 \rangle$  is a variable or a parameter (depending on what  $\langle y1 \rangle$  is) where the computed gamma cdf value is saved;

<gamma> is a number or parameter that specifies the shape parameter;

and where the <SUBSET/EXCEPT/FOR qualification> is optional.

#### **EXAMPLES**

LET A = GAMCDF(3,1.5) LET Y = GAMCDF(X1,GAMMA)

#### NOTE 1

The general form of the gamma probability density function is:

$$f(x) = \frac{\left(\frac{x-\mu}{\beta}\right)^{(\gamma-1)} e^{-\left(\frac{x-\mu}{\beta}\right)}}{\beta\Gamma(\gamma)} \quad \text{for } x \ge \mu$$
 (EQ 8-220)

The parameter  $\mu$  is a location parameter and the parameter  $\beta$  is a scale parameter. See topic (3) under the General considerations section at the beginning of this chapter for a discussion of generating pdf values for the general form of the distribution. The general gamma distribution has a mean and standard deviation of  $\gamma^*\beta$  and  $\beta^*$ sqrt( $\gamma$ ) respectively.

#### NOTE 2

If  $\gamma$  is 1, this distribution reduces to the exponential distribution. If  $\gamma$  is a positive integer, the gamma distribution is called the Erlang distribution. The gamma distribution with  $\gamma = (\nu/2)$ ,  $\mu = 0$ , and  $\beta = 2$  where  $\nu$  is a positive integer is a chi-square distribution with  $\nu$  degrees of freedom.

#### DEFAULT

None

#### **SYNONYMS**

None

## **RELATED COMMANDS**

| GAMCDF | = | Compute the gamma cumulative distribution function.       |
|--------|---|-----------------------------------------------------------|
| GAMPPF | = | Compute the gamma percent point function.                 |
| WEICDF | = | Compute the Weibull cumulative distribution function.     |
| WEIPDF | = | Compute the Weibull probability density function.         |
| WEIPPF | = | Compute the Weibull percent point function.               |
| EXPCDF | = | Compute the exponential cumulative distribution function. |
| EXPPDF | = | Compute the exponential probability density function.     |
| EXPPPF | = | Compute the exponential percent point function.           |
| CHSCDF | = | Compute the chi-square cumulative distribution function.  |
| CHSPDF | = | Compute the chi-square probability density function.      |
|        |   |                                                           |

CHSPPF

Compute the chi-square percent point function.

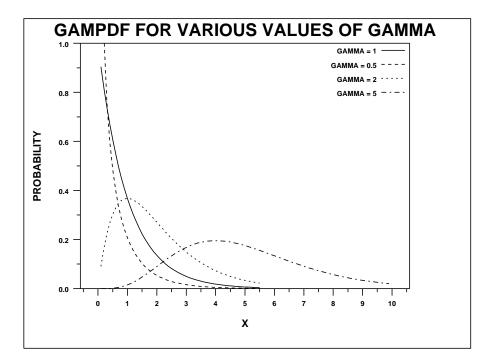
## REFERENCE

"Continuous Univariate Distributions," Johnson and Kotz, Houghton Mifflin, 1970 (chapter 17).

=

"Statistical Distributions," 2nd. Edition, Evans, Hastings, and Peacock, Wiley and Sons, 1993 (chapter 18).

## **APPLICATIONS**


Data Analysis, Reliability

## IMPLEMENTATION DATE

94/9

## PROGRAM

MAJOR YTIC NUMBER 6; MINOR YTIC NUMBER 1 YLIMITS 01; YTIC DECIMAL 1 XLIMITS 0 10; XTIC OFFSET 0.6 0.6 TITLE GAMPDF FOR VARIOUS VALUES OF GAMMA X1LABEL X; Y1LABEL PROBABILITY SEGMENT 1 COORDINATES 79 88 84 88; SEGMENT 1 PATTERN SOLID SEGMENT 2 COORDINATES 79 84 84 84; SEGMENT 2 PATTERN DASH SEGMENT 3 COORDINATES 79 80 84 80; SEGMENT 3 PATTERN DOT SEGMENT 4 COORDINATES 79 76 84 76; SEGMENT 4 PATTERN DA2 LEGEND 1 GAMMA = 1; LEGEND 1 COORDINATES 78 87 LEGEND 2 GAMMA = 0.5; LEGEND 2 COORDINATES 78 83 LEGEND 3 GAMMA = 2; LEGEND 3 COORDINATES 78 79 LEGEND 4 GAMMA = 5; LEGEND 4 COORDINATES 78 75 LEGEND JUSTIFICATION RIGHT; LINES SOLID DASH DOT DASH2 PLOT GAMPDF(X,1) FOR X = 0.1 0.1 5.5 AND PLOT GAMPDF(X,0.5) FOR X = 0.1 0.1 5.5 AND PLOT GAMPDF(X,2) FOR X = 0.1 0.1 5.5 AND PLOT GAMPDF(X,5) FOR X = 0.1 0.1 10

