DNFPPF

PURPOSE

Compute the doubly non-central F percent point function with degrees of freedom parameters v_1 and v_2 and non-centrality parameters λ_1 and λ_2 .

DESCRIPTION

The F distribution is the ratio of 2 central chi-square distributions:

 $F = (U/v_1)/(V/v_2)$

where U and V are 2 independent chi-square distributions with v_1 and v_2 degrees of freedom respectively. The doubly non-central F distribution is the ratio of 2 non-central chi-square distributions. That is:

 $f(x) = (X1/v_1)/(X2/v_2)$

where X1 and X2 are non-central chi-square distributions with degrees of freedom parameters v_1 and v_2 and non-centrality parameters λ_1 and λ_2 respectively. There is no simple closed form for the percent point function. It is calculated numerically.

SYNTAX

 $\label{eq:left} LET < y> = DNFPPF(, < v1>, < v2>, < lambda1>, < lambda2>) \\ < SUBSET/EXCEPT/FOR qualification> \\ < subscript{a} < subscript{b} < subscritter < subscr$

where $\langle p \rangle$ is a number, variable or a parameter containing values in the interval (0,1);

<y> is a variable or a parameter (depending on what is) where the computed ppf value is stored;

<v1> is a non-negative number, parameter or variable that specifies the first degrees of freedom parameter;

<v2> is a non-negative number, parameter or variable that specifies the second degrees of freedom parameter;

<lambdal> is a non-negative number, parameter or variable that specifies the first non-centrality parameter;

<lambda2> is a non-negative number, parameter or variable that specifies the second non-centrality parameter; and where the <SUBSET/EXCEPT/FOR qualification> is optional.

EXAMPLES

LET A = DNFPPF(0.75,3,3,5,5) LET A = DNFPPF(0.95,10,10,5,5) LET Y = DNFPPF(0.82,14,15,10000,10000)

NOTE 1

This function uses a bisection method to calculate the percent point function.

NOTE 2

Both the degrees of freedom parameters and the non-centrality parameters can be non-negative real numbers. The non-centrality parameters are restricted to values under 10,000. The compute time increases as the value of the non-centrality parameters increases. The degrees of freedom parameters need not be integers.

NOTE 3

DATAPLOT also supports the central F and the singly non-central F distributions (see the documentation for FPPF and NCFPPF). The DNFPPF function can be used for these cases as well by setting one or both non-centrality parameters to zero. However, it uses a different algorithm.

DEFAULT

None

SYNONYMS

None

RELATED COMMANDS

DNFCDF	=	Compute the doubly non-central F cumulative distribution function.
NCFCDF	=	Compute the singly non-central F cumulative distribution function.
NCFPPF	=	Compute the singly non-central F percent point function.
FCDF	=	Compute the F cumulative distribution function.
FPDF	=	Compute the F probability density function.
FPPF	=	Compute the F percent point function.

DNTCDF	=	Compute the doubly non-central t cumulative distribution function
DNTPPF	=	Compute the doubly non-central t percent point function.
CHSPDF	=	Compute the chi-square probability density function.
CHSPPF	=	Compute the chi-square percent point function.
CHSCDF	=	Compute the chi-square cumulative distribution function.
NORCDF	=	Compute the normal cumulative distribution function.
NORPDF	=	Compute the normal probability density function.
NORPPF	=	Compute the normal percent point function.
TCDF	=	Compute the t cumulative distribution function.
TPDF	=	Compute the t probability density function.
TPPF	=	Compute the t percent point function.

REFERENCE

"An Algorithm for Computing the Doubly Non-Central F C.D.F. to a Specified Accuracy," Charles Reeve, SED Note 86-4, November, 1986.

"On Representations of the Doubly Non-Central F Distribution," W. G. Bulgren, Journal of the American Statistical Association, Vol. 66, No. 333, 1971 (pp. 184-186).

APPLICATIONS

Power Functions

IMPLEMENTATION DATE

94/9

PROGRAM

TITLE AUTOMATIC X1LABEL X Y1LABEL PROBABILITY PLOT DNFPPF(P,10,10,5,5) FOR P = 0.01 0.01 0.99

