# **DNFCDF**

#### **PURPOSE**

Compute the doubly non-central F cumulative distribution function with degrees of freedom parameters  $v_1$  and  $v_2$  and with non-centrality parameters  $\lambda_1$  and  $\lambda_2$ .

### **DESCRIPTION**

The F distribution is the ratio of 2 central chi-square distributions:

$$F = (U/\nu_1)/(V/\nu_2)$$

where U and V are 2 independent chi-square distributions with  $v_1$  and  $v_2$  degrees of freedom respectively. The doubly non-central F distribution is the ratio of 2 non-central chi-square distributions. That is:

$$f(x) = (X1/v_1)/(X2/v_2)$$

where X1 and X2 are non-central chi-square distributions with degrees of freedom parameters  $v_1$  and  $v_2$  and non-centrality parameters  $\lambda_1$  and  $\lambda_2$  respectively. There is a series representation for the cumulative distribution function. However, since it is rather complicated, it is not given here. It is given in the Reeve's paper (see the REFERENCE section below).

#### **SYNTAX**

<y2> is a variable or a parameter (depending on what <y1> is) where the computed cdf value is stored;

<v1> is a non-negative number, parameter or variable that specifies the first degrees of freedom parameter;

<v2> is a non-negative number, parameter or variable that specifies the second degrees of freedom parameter;

<lambda1> is a non-negative number, parameter or variable that specifies the first non-centrality parameter;

<lambda2> is a non-negative number, parameter or variable that specifies the second non-centrality parameter; and where the <SUBSET/EXCEPT/FOR qualification> is optional.

# **EXAMPLES**

LET A = DNFCDF(2,3,3,5,5)

LET A = DNFCDF(2,10,10,5,5)

LET Y = DNFCDF(1.1,14,15,10000,10000)

#### NOTE 1

This function uses code written by Charles Reeves while he was a member of the Statistical Engineering Division at NIST. The algorithm is described in the paper listed in the REFERENCE section below. This algorithm is based on a series representation given by Bulgren (see the REFERENCE below) of the exact form of the doubly non-central F distribution.

## NOTE 2

Both the degrees of freedom parameters and the non-centrality parameters can be non-negative real numbers. The non-centrality parameters are restricted to values under 10,000. The compute time increases as the value of the non-centrality parameters increases.

#### NOTE 3

DATAPLOT also supports the central F and the singly non-central F distributions (see the documentation for FCDF and NCFCDF). The DNFCDF function can be used for these cases as well by setting one or both non-centrality parameters to zero. However, it uses a different algorithm.

## **DEFAULT**

None

### **SYNONYMS**

None

#### **RELATED COMMANDS**

DNFPPF = Compute the doubly non-central F percent point function.

NCFCDF = Compute the singly non-central F cumulative distribution function.

NCFPPF = Compute the singly non-central F percent point function.

FCDF = Compute the F cumulative distribution function.

| FPDF   | = | Compute the F probability density function.                        |
|--------|---|--------------------------------------------------------------------|
| FPPF   | = | Compute the F percent point function.                              |
| DNTCDF | = | Compute the doubly non-central t cumulative distribution function. |
| DNTPPF | = | Compute the doubly non-central t percent point function.           |
| CHSPDF | = | Compute the chi-square probability density function.               |
| CHSPPF | = | Compute the chi-square percent point function.                     |
| CHSCDF | = | Compute the chi-square cumulative distribution function.           |
| NORCDF | = | Compute the normal cumulative distribution function.               |
| NORPDF | = | Compute the normal probability density function.                   |
| NORPPF | = | Compute the normal percent point function.                         |
| TCDF   | = | Compute the t cumulative distribution function.                    |
| TPDF   | = | Compute the t probability density function.                        |
| TPPF   | = | Compute the t percent point function.                              |

# REFERENCE

"An Algorithm for Computing the Doubly Non-Central F C.D.F. to a Specified Accuracy," Charles Reeve, SED Note 86-4, November, 1986.

"On Representations of the Doubly Non-Central F Distribution," W. G. Bulgren, Journal of the American Statistical Association, Vol. 66, No. 333, 1971 (pp. 184-186).

## **APPLICATIONS**

Power Functions

## IMPLEMENTATION DATE

94/9

# **PROGRAM**

TITLE AUTOMATIC X1LABEL X Y1LABEL PROBABILITY PLOT DNFCDF(X,3,10,5,5) FOR  $X=0\ 0.1\ 6$ 

