DISCDF

PURPOSE

Compute the discrete uniform cumulative distribution function.

DESCRIPTION

The discrete uniform probability density function is:

$$p(x, n) = \frac{1}{n+1}$$
 for $x = 0, 1, 2, ..., n$ (EQ 8-164)

The discrete uniform cumulative distribution function is:

$$F(x, n) = \frac{x+1}{n+1}$$
 for $x = 0, 1, 2, ..., n$ (EQ 8-165)

SYNTAX

LET < y> = DISCDF(< x>, < n>)

<SUBSET/EXCEPT/FOR qualification>

where <x> is a variable, a number, or a parameter containing values between 0 and <n>;

<n> is a number or parameter that defines the upper limit of the discrete uniform distribution;

<y> is a variable or a parameter (depending on what <y> is) where the computed cdf value is stored; and where the <SUBSET/EXCEPT/FOR qualification> is optional.

EXAMPLES

LET A = DISCDF(3,20)LET Y = DISCDF(X1,100)

DEFAULT

None

SYNONYMS

None

RELATED COMMANDS

DISPDF = Compute the discrete uniform probability density function.

DISPPF = Compute the discrete uniform percent point function.

UNIPDF = Compute the uniform cumulative distribution function.

UNIPDF = Compute the uniform probability density function.

UNIPPF = Compute the uniform percent point function.

UNISF = Compute the uniform sparsity function.

NORCDF = Compute the normal cumulative distribution function.

NORPDF = Compute the normal cumulative distribution function.

Compute the normal probability density function.

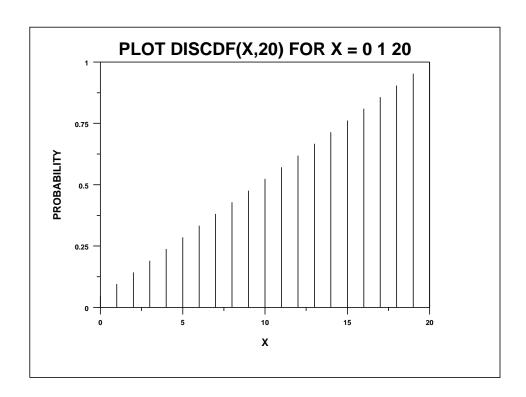
Compute the normal percent point function.

REFERENCE

"Statistical Distributions," 2nd. Edition, Evans, Hastings, and Peacock, John Wiley and Sons, 1993 (chapter 36).

"Discrete Distributions," Johnson and Kotz, Houghton-Mifflin, 1970 (chapter 10).

APPLICATIONS


Data Analysis

IMPLEMENTATION DATE

94/12 (earlier versions have a bug)

PROGRAM

TITLE AUTOMATIC
X1LABEL X
Y1LABEL PROBABILITY
LINE BLANK
SPIKE ON
PLOT DISCDF(X,20) FOR X = 0 1 20

