CHSPPF

PURPOSE

Compute the chi-square percent point function with degrees of freedom parameter v.

DESCRIPTION

The input value should be between 0 and 1 and the degrees of freedom parameter v should be a positive integer. The chi-square distribution has the following probability density function:

$$f(x) = \frac{x^{\left(\frac{\nu}{2}-1\right)}e^{\left(\frac{-x}{2}\right)}}{2^{\nu/2}\Gamma\left(\frac{\nu}{2}\right)}$$
 for x > 0 (EQ 8-143)

There is no simple closed form for the chi-square percent point function. It is computed numerically using a bisection method.

SYNTAX

LET <y2> = CHSPPF(<y1>,NU)

- <SUBSET/EXCEPT/FOR qualification> where $\langle y1 \rangle$ is a variable, a number, or a parameter in the range 0 to 1;
 - <y2> is a variable or a parameter (depending on what <y1> is) where the computed chi-square ppf value is stored; <NU> is a positive integer (the degrees of freedom);

and where the <SUBSET/EXCEPT/FOR qualification> is optional.

EXAMPLES

LET A = CHSPPF(0.9,10)LET A = CHSPPF(A1, 10)LET Y = CHSPPF(X1,NU)

DEFAULT

None

SYNONYMS

None

RELATED COMMANDS

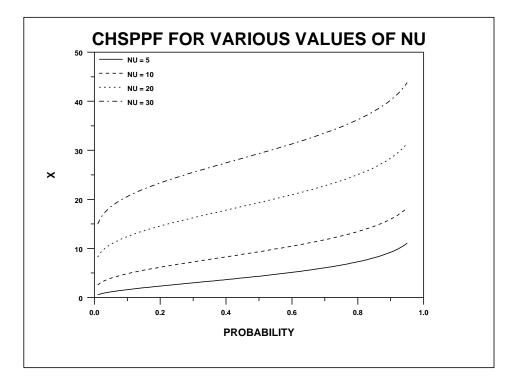
CHSCDF	=	Compute the chi-square cumulative distribution function.
CHSPDF	=	Compute the chi-square probability density function.
NCCCDF	=	Compute the non-central chi-square cumulative distribution function.
NCCPPF	=	Compute the non-central chi-square percent point function.
FCDF	=	Compute the F cumulative distribution function.
FPDF	=	Compute the F probability density function.
FPPF	=	Compute the F percent point function.
NORCDF	=	Compute the normal cumulative distribution function.
NORPDF	=	Compute the normal probability density function.
NORPPF	=	Compute the normal percent point function.
TCDF	=	Compute the T cumulative distribution function.
TPDF	=	Compute the T probability density function.
TPPF	=	Compute the T percent point function.
GAMCDF	=	Compute the gamma cumulative distribution function.
GAMPPF	=	Compute the gamma percent point function.

REFERENCE

"Continuous Univariate Dsitributions - 1," Johnson and Kotz, Houghton Mifflin, 1970 (chapter 17).

"Handbook of Mathematical Functions, Applied Mathematics Series, Vol. 55," Abramowitz and Stegum, National Bureau of Standards, 1964 (page 941).

APPLICATIONS


Hypothesis Testing

IMPLEMENTATION DATE

Pre-1987

PROGRAM

TITLE CHSPPF FOR VARIOUS VALUES OF NU X1LABEL X; Y1LABEL PROBABILITY SEGMENT 1 COORDINATES 16 88 21 88; SEGMENT 1 PATTERN SOLID SEGMENT 2 COORDINATES 16 84 21 84; SEGMENT 2 PATTERN DASH SEGMENT 3 COORDINATES 16 80 21 80; SEGMENT 3 PATTERN DOT SEGMENT 4 COORDINATES 16 76 21 76; SEGMENT 4 PATTERN DA2 LEGEND 1 NU = 5; LEGEND 1 COORDINATES 22 87 LEGEND 2 NU = 10; LEGEND 2 COORDINATES 22 83 LEGEND 3 NU = 20; LEGEND 3 COORDINATES 22 79 LEGEND 4 NU = 30; LEGEND 4 COORDINATES 22 75 XLIMITS 01 MAJOR XTIC NUMBER 6 MINOR XTIC NUMBER 1 **XTIC DECIMAL 1** LINES SOLID DASH DOT DASH2 PLOT CHSPPF(X,5) FOR X = 0.01 .01 0.95 AND PLOT CHSPPF(X,10) FOR X = 0.01 .01 0.95 AND PLOT CHSPPF(X,20) FOR X = 0.01 .01 0.95 AND PLOT CHSPPF(X,30) FOR X = 0.01 .01 0.95

