# **CAUSF**

#### **PURPOSE**

Compute the standard Cauchy (i.e, median=0, 75% point at 1) sparsity function.

### **DESCRIPTION**

The standard form of the Cauchy probability density function is:

$$f(x) = \frac{1}{\pi(1+x^2)}$$
 (EQ 8-136)

The standard form of the Cauchy sparsity function is:

$$sf(p) = \frac{\pi}{(\sin(\pi p))^2}$$
 (EQ 8-137)

The input value is a real number between 0 and 1.

### **SYNTAX**

LET < y2 > = CAUSF(< y1 >) < SUBSET/EXCEPT/FOR qualification >

where  $\langle y1 \rangle$  is a variable, a number, or a parameter in the range 0 to 1;

<y2> is a variable or a parameter (depending on what <y1> is) where the computed Cauchy sf value is stored; and where the <SUBSET/EXCEPT/FOR qualification> is optional.

#### **EXAMPLES**

LET A = CAUSF(0.9)LET Y = CAUSF(P)

### NOTE

The general form of the Cauchy probability density function is:

$$f(x) = \left(\frac{1}{s}\right) \frac{1}{\pi \left(1 + \left(\frac{x - t}{s}\right)^2\right)}$$
 (EQ 8-138)

where t and s are the location and scale parameters respectively. The general form of the Cauchy sparsity function is:

$$sf(p) = \frac{s\pi}{(\sin(\pi p))^2}$$
 (EQ 8-139)

See topic (3) under the General considerations section at the beginning of this chapter for a discussion of generating sparsity function values for the general form of the distribution.

## **DEFAULT**

None

#### **SYNONYMS**

None

#### **RELATED COMMANDS**

**CAUCDF** Compute the Cauchy cumulative distribution function. **CAUPDF** Compute the Cauchy probability density function. **CAUPPF** Compute the Cauchy percent point function. NORCDF Compute the normal cumulative distribution function. NORPDF Compute the normal probability density function. NORPPF Compute the normal percent point function. TCDF Compute the T cumulative distribution function. Compute the T probability density function. **TPDF TPPF** Compute the T percent point function.

# **REFERENCE**

"Continuous Univariate Distributions - 1," Johnson and Kotz, Houghton Mifflin, 1970 (chapter 16).

"Handbook of Mathematical Functions, Applied Mathematics Series, Vol. 55," Abramowitz and Stegum, National Bureau of Standards, 1964 (page 930).

### **APPLICATIONS**

Data Analysis

### **IMPLEMENTATION DATE**

94/4

### **PROGRAM**

XLIMITS 0 1
MAJOR XTIC NUMBER 6
MINOR XTIC NUMBER 1
XTIC DECIMAL 1
TITLE AUTOMATIC
PLOT CAUSF(X) FOR X = 0.01 .01 0.99

