CAUPDF

PURPOSE

Compute the standard Cauchy (i.e, median=0, 75% point at 1) probability density function.

DESCRIPTION

The standard form of the Cauchy distribution has the following probability density function:

$$f(x) = \frac{1}{\pi(1+x^2)}$$
 (EQ 8-129)

The input value can be any real number. The Cauchy distribution does not have a finite mean or standard deviation. It is similar to the normal distribution, but it has longer and flatter tails.

SYNTAX

LET < y2 > = CAUPDF(< y1 >)

<SUBSET/EXCEPT/FOR qualification>

where <y1> is a variable, a number, or a parameter;

<y2> is a variable or a parameter (depending on what <y1> is) where the computed Cauchy pdf value is stored; and where the <SUBSET/EXCEPT/FOR qualification> is optional.

EXAMPLES

LET A = CAUPDF(3)LET Y = CAUPDF(X1)

NOTE

The general form of the Cauchy probability density function is:

$$f(x) = \left(\frac{1}{s}\right) \frac{1}{\pi \left(1 + \left(\frac{x-t}{s}\right)^2\right)}$$
(EQ 8-130)

which is mathematically equivalent to the more commonly used formula:

$$f(x) = \frac{s}{\pi(s^2 + (x - t)^2)}$$
 (EQ 8-131)

where t and s are the location and scale parameters respectively. See topic (3) under the General considerations section at the beginning of this chapter for a discussion of generating pdf values for the general form of the distribution.

DEFAULT

None

SYNONYMS

None

RELATED COMMANDS

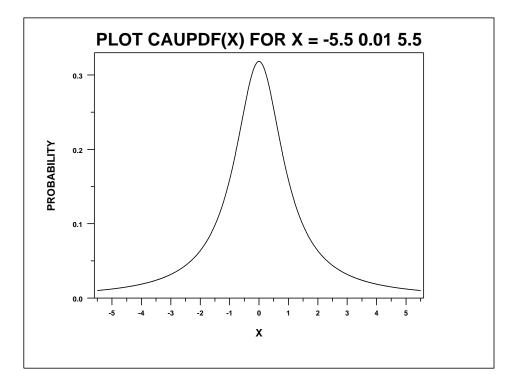
CAUCDF	=	Compute the Cauchy cumulative distribution function.
CAUPPF	=	Compute the Cauchy percent point function.
NORCDF	=	Compute the normal cumulative distribution function.
NORPDF	=	Compute the normal probability density function.
NORPPF	=	Compute the normal percent point function.
TCDF	=	Compute the T cumulative distribution function.
TPDF	=	Compute the T probability density function.
TPPF	=	Compute the T percent point function.

REFERENCE

"Continuous Univariate Distributions - 1," Johnson and Kotz, Houghton Mifflin, 1970 (chapter 16).

"Handbook of Mathematical Functions, Applied Mathematics Series, Vol. 55," Abramowitz and Stegum, National Bureau of Standards, 1964 (page 930).

APPLICATIONS


Data Analysis

IMPLEMENTATION DATE 94/4

94/4

PROGRAM

YLIMITS 0 0.3 YTIC OFFSET 0 0.03 MAJOR YTIC NUMBER 4 MINOR YTIC NUMBER 1 YTIC DECIMAL 1 XLIMITS -5 5 XTIC OFFSET 0.6 0.6 TITLE AUTOMATIC X1LABEL X Y1LABEL PROBABILITY PLOT CAUPDF(X) FOR X = -5.5 0.01 5.5

