# PEXCDF

#### PURPOSE

Compute the exponential power cumulative distribution function with shape parameters a and b.

# DESCRIPTION

The exponential power distribution has the proability density function:

$$f(x, \alpha, \beta) = \left(\frac{e\beta}{\alpha\beta}\right) x^{\beta-1} e^{\left(\frac{x}{\alpha}\right)^{\beta}} e^{-e^{\left(\frac{x}{\alpha}\right)^{\beta}}} \qquad x \ge 0, \alpha > 0, \beta > 0$$
 (EQ Aux-252)

The corresponding cumulative distribution function is:

F(x, α, β) = 1 − 
$$e^{1 - e^{\left(\frac{x}{\alpha}\right)^{\beta}}}$$
 x ≥ 0, α > 0, β > 0 (EQ Aux-253)

This distribution has been recommended for lifetime analysis when a U-shaped hazard function is desired. This corresponds to rapid failure once the product starts to wear out after a period of steady or even improving reliability. See the Smith and Bain paper listed in the Reference section below for details.

### SYNTAX

LET <y> = PEXCDF(<x>,<alpha>,<beta>) </br>

<SUBSET/EXCEPT/FOR qualification>

where <x> is a non-negative variable, a number, or a parameter;

<y> is a variable or a parameter (depending on what <x> is) where the computed eponential power cdf value is saved;

<alpha> is a positive number or parameter that specifies the first shape parameter;

<br/>

and where the <SUBSET/EXCEPT/FOR qualification> is optional.

#### **EXAMPLES**

LET A = PEXCDF(3,1.5,0.8) LET X2 = PEXCDF(X1,ALPHA,BETA)

## NOTE 1

The general form of the general exponential power cumulative distribution function is:

F(x, α, β) = 1 − 
$$e^{1 - e^{\left(\frac{x-\mu}{\alpha}\right)^{\beta}}}$$
 x ≥ 0, α > 0, β > 0 (EQ Aux-254)

where  $\mu$  is a positive location parameter. The case  $\beta = 1$  is the truncated extreme value distribution.

#### NOTE 2

Johnson, Kotz, and Balakrishnan define this distribution with the reciprocal of the a parameter (i.e., simply substitute a with (1/a) in the pdf formula above). They also define a power exponential (or Subbotin) distribution. However, this distribution is distinct from the exponential power distribution defined here. The Subbotin distribution is also known as the error distribution.

#### DEFAULT

None

#### **SYNONYMS**

None

#### **RELATED COMMANDS**

| PEXPDF | = | Compute the exponential power probability density function.         |
|--------|---|---------------------------------------------------------------------|
| PEXPPF | = | Compute the exponential power percent point function.               |
| EWECDF | = | Compute the exponentiated Weibull cumulative distribution function. |
| EWEPDF | = | Compute the exponentiated Weibull probability density               |
| WEICDF | = | Compute the Weibull cumulative distribution function.               |
| WEIPDF | = | Compute the Weibull probability density function.                   |
| WEIPPF | = | Compute the Weibull percent point function.                         |
| EV1CDF | = | Compute the extreme value type 1 cumulative distribution function.  |

| EV1PDF | = | Compute the extreme value type 1 probability density function |
|--------|---|---------------------------------------------------------------|
| EV1PPF | = | Compute the extreme value type 1 percent point function.      |

#### REFERENCE

"An Exponential-Power Life-Testing Distribution," Smith and Bain, Communications in Statistics, 1975, pp. 469-481.

"Continuous Univariate Distributions - Vol. 2," 2nd. Ed., Johnson, Kotz, and Balakrishnan, John Wiley and Sons, 1994 (pp. 63-64).

"Statistical Distributions," 2nd. Ed., Evans, Hastings, and Peacock, John Wiley and Sons, 1994 (chapter 12).

#### **APPLICATIONS**

Reliability Analysis

### IMPLEMENTATION DATE

96/1

#### PROGRAM

LET A = DATA 1 1 1 0.5 0.5 0.5 2 2 2 LET B = DATA 0.5 1 2 0.5 1 2 0.5 1 2

MULTIPLOT 3 3; MULTIPLOT CORNER COORDINATES 0 0 100 100 TITLE AUTOMATIC TIC LABEL SIZE 3 LABEL SIZE 3 LOOP FOR K = 1 1 9 LET A1 = A(K) LET B1 = B(K) X1LABEL ALPHA = ^A1 X2LABEL BETA = ^B1 PLOT PEXCDF(X,A1,B1) FOR X = 0 0.01 4 END OF LOOP END OF MULTIPLOT

