GEXCDF Auxillary

GEXCDF

PURPOSE

Compute the generalized exponential cumulative distribution function.

DESCRIPTION

The generalized exponential distribution has the following probability density function:

$$f(x, \lambda_1, \lambda_{12}, s) = (\lambda_1 + \lambda_{12}(1 - e^{-sx}))e^{\lambda_1 x - \lambda_{12} x + \frac{\lambda_{12}}{s}(1 - e^{-sx})}$$
 $x \ge 0$ (EQ Aux-166)

where 11, 112, and s are positive shape parameters. The cumulative distribution has the formula:

$$F(x, \lambda_1, \lambda_{12}, s) = 1 - e^{\lambda_1 x - \lambda_{12} x + \frac{\lambda_{12}}{s} (1 - e^{-sx})}$$
 $x \ge 0$ (EQ Aux-167)

This distribution is the marginal distribution for a joint bivariate exponential distribution proposed in a paper by Ryu (see the Reference section below).

SYNTAX

LET < y > = GEXCDF(< x >, < 11 >, < 112 >, < s >)

<SUBSET/EXCEPT/FOR qualification>

Compute the generalized exponential probability density function.

where $\langle x \rangle$ is a variable, a number, or a parameter;

<y> is a variable or a parameter (depending on what <x> is) where the computed generalized exponential pdf value is saved;

- <11> is variable, a number, or a parameter that specifies the first shape parameter;
- <112> is variable, a number, or a parameter that specifies the second shape parameter;
- <s> is variable, a number, or a parameter that specifies the third shape parameter;

and where the <SUBSET/EXCEPT/FOR qualification> is optional.

EXAMPLES

LET A = GEXCDF(3,0.5,2,1.5)LET X2 = GEXCDF(X1,LAM1,LAM12,SD)

DEFAULT

None

SYNONYMS

None

RELATED COMMANDS GEXPDF

GEXPPF Compute the generalized exponential percent point function. **EXPCDF** Compute the exponential cumulative distribution function. **EXPPDF** Compute the exponential probability density function. **EXPPPF** Compute the exponential percent point function. **DEXCDF** Compute the double exponential cumulative distribution function. **DEXPDF** Compute the double exponential probability density function. **DEXPPF** Compute the double exponential percent point function. Compute the Weibull cumulative distribution function. WEICDF WEIPDF Compute the Weibull probability density function. WEIPPF Compute the Weibull percent point function.

REFERENCE

"An Extension of Marshall and Olkin's Bivariate Exponential Distribution," Ryu, Journal of the American Statistical Association, 1993, (pp. 1458-1465).

"Continuous Univariate Distributions--Vol. I," 2nd. Ed., Johnson, Kotz, and Balakrishnan, John Wiley and Sons, 1994, (page 555).

APPLICATIONS

Reliability

Auxillary GEXCDF

IMPLEMENTATION DATE

96/2

PROGRAM

MULTIPLOT 2 2; MULTIPLOT CORNER COORDINATES 0 0 100 100 TITLE AUTOMATIC X1LABEL X

Y1LABEL PROBABILITY

PLOT GEXCDF(X,0.1,0.1,0.5) FOR $X=0\ 0.01\ 10$ PLOT GEXCDF(X,0.5,0.5,2) FOR $X=0\ 0.01\ 10$ PLOT GEXCDF(X,5,0.5,2) FOR $X=0\ 0.01\ 10$ PLOT GEXCDF(X,0.5,5,2) FOR $X=0\ 0.01\ 10$ END OF MULTIPLOT

