Auxillary DLGCDF

DLGCDF

PURPOSE

Compute the discrete logarithmic series cumulative distribution function.

DESCRIPTION

The discrete logarithmic distribution has the following probability density function:

$$p(x, \theta) \equiv \frac{-\theta^x}{\log(1 - c)x}$$
 $x = 1, 2, ...$ (EQ Aux-94)

where θ is a shape parameter in the interval (0,1). The cumulative distribution is the probability of obtaining x or fewer events. It is the sum of the logarithmic series probabilities of 0 to x.

SYNTAX

where <y1> is a positive integer variable, number, or parameter;

<y2> is a variable or a parameter (depending on what <y1> is) where the computed logarithmic series cdf value is stored;

<theta> is a number, parameter, or variable in the range (0,1) that specifies the shape parameter;

and where the <SUBSET/EXCEPT/FOR qualification> is optional.

EXAMPLES

LET A = DLGCDF(3,0.5)LET X2 = DLGCDF(X1,0.3)

NOTE

The cumulative distribution function is computed from the following recurrence relation given in Johnson, Kotz, and Kemp (see the Reference section below):

$$p(X=x+1) = \frac{\theta x \ p(X=x)}{x+1}$$
 $x = 1, 2, ...$ (EQ Aux-95)

DEFAULT

None

SYNONYMS

None

RELATED COMMANDS

DLGPDF Compute the logarithmic series probability density function. DLGPPF Compute the logarithmic series percent point function. = WARCDF Compute the Waring cumulative distribution function. WARPDF Compute the Waring probability density function. =WARPPF Compute the Waring percent point function. Compute the Poisson cumulative distribution function. POICDF **POIPDF** Compute the Poisson probability density function. POIPPF Compute the Poisson percent point function. = BINCDF Compute the binomial cumulative distribution function. = **BINPDF** = Compute the binomial probability density function. BINPPF Compute the binomial percent point function. **NBCDF** = Compute the negative binomial cumulative distribution function.

NBCDF = Compute the negative binomial cumulative distribution function.

NBPDF = Compute the negative binomial probability density function.

NBPPF = Compute the negative binomial percent point function.

GEOCDF = Compute the geometric cumulative distribution function.

GEOPDF = Compute the geometric probability density function.

GEOPPF = Compute the geometric percent point function.

DLGCDF Auxillary

REFERENCE

"Discrete Univariate Distributions," 2nd. ed., Johnson, Kotz, and Kemp, John Wiley & Sons, 1994 (chapter 7).

"Statistical Distributions," 2nd. ed., Evans, Hastings, and Peacock, John Wiley and Sons, 1993 (chapter 23).

APPLICATIONS

Data Analysis

IMPLEMENTATION DATE

95/4

PROGRAM

```
LET Z = DATA ...

0.1 0.3 0.5 0.7 0.8 0.85 0.90 0.95 0.99 0.995 0.999 0.9999

TITLE AUTOMATIC

XTIC OFFSET 0.5 0.5

SPIKE ON

LINE BLANK

MULTIPLOT CORNER COORDINATES 0 0 100 100

MULTIPLOT 4 3

LOOP FOR K = 1 1 12

LET THETA = Z(K)

X1LABEL THETA = ^THETA

PLOT DLGCDF(X,THETA) FOR X = 1 1 50

END OF LOOP

END OF MULTIPLOT
```

