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IXS Spectroscopy with Very High Resolution

IXS spectroscopy with very high resolution (. 1 meV) is one of the major
techniques for studying vibrational dynamics in condensed matter.

Ei , ki

Ef , kf , Q

X-ray monochromators and analyzers with meV- and sub-meV-resolution
are the main optical components of the spectrometers.
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Modern IXS Spectrometer (layout)
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Sette, Krisch, et al. @ESRF Sinn, Alp, et al. @APS Baron, et al. @SPring-8
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Resolution of the IXS spectrometers & count-rates,
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∆ε ≥ 1 meV ∆Q ≈ 0.5 nm−1 Count-rate . 1 Hz
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∆E of Bragg back reflections in Si
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∆E = spectral width of the

Bragg backreflection
E = photon energy in

Bragg backreflection

The smaller ∆E is required,
the higher indexed Bragg
reflection at higher photon
energy E has to be used

(unfortunately!).

∆E = 0.1 meV requires
E = 31 keV
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Undulator spectrum
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Low-energy photons would be better:

• Higher count-rates (more photons in the low-energy range).

• IXS applicable at low- and intermediate energy SR facilities.

• Better momentum resolution ∆Q for the same solid acceptance angle
Υ × Υ :

∆Q=Υ K . K = E/c .

• Proximity to K-absorption edges of the important transition metals.
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Low-energy photons would be better:

• Higher count-rates (more photons in the low-energy range).

• IXS applicable at low- and intermediate energy SR facilities.

• Better momentum resolution ∆Q for the same solid acceptance angle
Υ × Υ :

∆Q=Υ K . K = E/c .

• Proximity to K-absorption edges of the important transition metals.

... but ...

Employing low-energy photons is in conflict with the principles
underlying single-bounce backscattering monochromators and analyzers.
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New concepts, new solutions are required:

Problem:

Spectral width ∆E of the low-indexed Bragg reflections is too large.
Typically ∆E > 20 meV.
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New concepts, new solutions are required:

Problem:

Spectral width ∆E of the low-indexed Bragg reflections is too large.
Typically ∆E > 20 meV.

Solution:

Use a small fraction of it!
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New concept illustrated with optical prism

DE

C

W

D - dispersing element C - collimator W - wavelength selector
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New concept

DE

C

W

D - dispersing element C - collimator W - wavelength selector

An asymmetrically cut crystal behaves like the optical prism dispersing
the photons with different photon energies: effect of angular dispersion.
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Effect of angular dispersion (1)
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H
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H̃=H+∆H

∆H= K α
sin(θ−η)

ẑ

α ∝ 1 − n

n – refractive index
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Effect of angular dispersion (2)
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H̃=H+∆H

∆H= K α
sin(θ−η)

ẑ

θ < π/2

δθ′ = −δE
E (1 + b) tan θ

b = − sin(θ−η)
sin(θ+η)

Yu. Shvyd’ko, X-Ray Optics, Springer-Verlag (2004)
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Effect of angular dispersion (3)
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KH = K0+H̃

H̃=H+∆H

∆H= K α
sin(θ−η)

ẑ

θ ' π/2

δθ′ = δE
E (2 tan η)

AND: Exact Backscattering is NOT at normal incidence!
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CDW-Monochromator and its Spectral Resolution

(a)

C

W

DE

∆E
E

= ∆θ
tan η

The smaller the photon energy E,

the smaller is the energy bandwidth ∆E (fortunately!).

Yu. Shvyd’ko

X-Ray Optics, Springer-Verlag (2004)
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Spectral resolution of the CDW-monochromator

(a)

C

W

DE

∆E
E

= ∆θ
tan η

∆E
E

=10−6 − 10−8

is feasible

E = 10 keV ⇒ ∆E = 10 − 0.1 meV

E = 5 keV ⇒ ∆E = 5 − 0.05 meV
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Throughput of the CDW-monochromator
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Angular-Dispersive In-line CDDW-monochromator
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Angular-dispersive CDDW monochromator:
E = 9.1315 keV, ∆E = 0.1 meV, D=Si(008)

Single-bounce backscattering monochromator:
E = 31.02 keV, ∆E = 0.1 meV, Si(1 3 27).

The angular dispersion is enhenced by a factor of 2:
Smaller asymmetry angle!
Shorter dispersing elements D1, D2!
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Features of the CDW-monochromators

C

W

D

1. ∆E/E is independent of E or of Bragg reflection.

2. The smaller the photon energy E the smaller is the bandpass ∆E.

3. ∆E can be varied by changing η (E is fixed).

4. The peak throughput T and the angular acceptance ∆θ

are almost constant (while changing η).

5. Steep wings in the spectral function.

6. The temperature control and energy tuning is technically not demanding

(for x-ray photons in the low-energy region 5 − 10 keV).
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CDW-Analyzer
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M - collimating KB graded-multilayer mirrors

D - detector
S - sample

D - dispersing element

W - wavelength selector C - collimator
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CDW-Segmented Analyzer
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PSD - position sensitive detector
D - dispersing elements
W - wavelength selector
C - collimator

To overcome technical problems, associated with the
big length (1-2 m), the dispersing element can be
built of several independent segments which need
not be perfectly aligned or have precisely
the same temperature.

Angular-dispersive CDW analyzer:
E = 9.1315 keV, ∆E = 0.1 meV, D=Si(008)

Single-bounce backscattering analyzer:
E = 31.02 keV, ∆E = 0.1 meV, Si(1 3 27).
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Initial Experimental Results

The main questions to be addressed:

can we observe the effect of angular dispersion?

and

can we demonstrate a monochromator based on this principle?
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Experimental Set-up @APS.XOR3

C

W

D

D = Si(0 0 8), η = 88.5◦

E = 9.1 keV
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Bragg Backscattering from Asymmetrically Cut Crystal
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What do we observe?

1. Exact Backscattering takes place NOT
at normal incidence to atomic planes:
angular shift ∆ΘR = 227 µrad

2. Angular dispersion:
2 × ∆Θa = 230 µrad

We are observing the effect of
angular dispersion, underlying
the principle of
monochromatization

Shvyd’ko, Lerche, Kütgens, Rüter, Alatas, Zhao, PRL 97 (2006)
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Energy Resolution Measurements
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Why is it Broadened?

Good news: angular dispersion is working both as a physical effect, and the
principle of monochromatization.

However: we are measuring ∆E = 2.1 meV instead of a design value of
0.7 meV. Why?

• Crystal imperfection?

• Strain due to mounting?

• Strain due unfavorable crystal shape?

• Insufficient surface flatness?

• Temperature variations along the dispersing element?
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Dispersing Silicon Crystal Elements = Long Crystals

dispersing element (D)

C

W

D

�
�
��

1. Si of highest quality and purity is required, ρ ≥ 50 kΩ·cm
Used: ρ ' 1 kΩ·cm

2. Strain-free crystals and strain-free mounting are required.

∆E/E = 7 × 10−8 !
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Collimator and Wavelength-Selector
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Unfavourable crystal shape,
even corners, can induce
sizable strain especially
in thin crystal parts.
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Temperature variations along the dispersing element
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For Si(0 0 8), E = 9.1 keV

0.1 meV ⇒ 4.3 mK Total variation: ∆T . 4 mK ⇒ ∆E . 0.1 meV
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Why is it Broadened?

• Crystal imperfection? (plausible)

• Strain due to mounting? (plausible)

• Strain due unfavorable crystal form? (plausible)

• Insufficient surface flatness? (plausible)

• Temperature variations along the dispersing element? (no)

The plausible reasons have to be studied experimentally
as part of the R+D program.
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Summary of Initial Results

• The effect of angular dispersion in x-ray Bragg diffraction from asym-
metrically cut crystals was observed experimentally.

• The effect of angular dispersion offers a new means for monochrom-
atization of medium energy x-rays (5-10 keV), to meV and sub-meV
bandwidths, not limited by the intrinsic widths of Bragg reflections.

• The CDW monochromator for 9.1 keV x-rays was demonstrated. The
measured energy bandwidth of the monochromator is 2.2 meV (design
value = 0.7 meV).

• Worse than theoretical resolution is attributed to (i) crystal imperfec-
tions, (ii) strain due to mounting, etc.

• Next goals: achieve 0.7 meV resolution, build 0.35 meV prototype IXS
spectrometer, build 0.1 meV IXS spectrometer for NSLS-II.
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Prerequisites for Building a Working Instrument

An IXS spectrometer with 0.1 meV resolution, operating at medium photon energies is fea-
sible. There are no limitations in principal.

undulator

x-rays

bandwidth
100 eV

cooled
monochromator

bandwidth
1 eV

focusing
optics

high-resolution
monochromator

C/W

D1
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bandwidth
0.1 - 1 meV

focusing
mirror

sample collimating
mirror

C

W

D

segmented
high-resolution

analyzer

bandwidth
0.1-1 meV

strip
detector

Prerequisites:
Identification of the technical problems
Resources
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Technical Challenges in Building a Working Instrument

Crystal fabrication:
highest quality Si,
precisely machined 200-300 mm long crystals (1 mrad precise cuts),
precisely machined 60 mm long and 0.2 mm thin crystals (1 mrad precise cuts),
strain-free mounting,
polishing 20-30 cm long crystals with slope error . 0.2 mrad

Temperature control:
temperature homogeneity and stability 0.5 mK (=0.01 meV)

Multi-crystal alignment:
CDW analyzer with up to 10 crystal segments, parallel to 50 µrad

Collimating optics:
divergence . 50 µrad
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Timeline for Developing a 0.1 meV IXS spectrometer

Scope: To develop an IXS spectrometer with 0.1 meV resolution, operating
at medium photon energies at NSLS-II

FY07-08: Develop prototype spectrometer for 9 keV x-rays with a resolution of 0.35 meV
at APS.

FY09: Install and test prototype spectrometer at APS.

FY10: Engineering design for 0.1 meV spectrometer based on lessons learned.

FY11-12: Fabricate 0.1 meV spectrometer.

FY13: Commission 0.1 meV spectrometer at NSLS-II.
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0.35 meV Prototype IXS Spectrometer: R+D plan

FY07: (selected items)

1. Redo crystals to achieve design resolution (0.7 meV) of the existing CDW test monochro-
mators.

2. Dynamical theory simulations of the 0.35 meV CDDW in-line monochromator and CDW
segmented analyzer.

3. 0.35 meV segmented CDW analyzer - design and production of elements:
3.1. Production of the long crystals, and quality test.
3.2. Multi-crystal alignment using micro- and nano-positioning systems.
3.3. Construct and built multi-crystal pre-alignment arrangement.
3.4. Thermally stable and homogeneous enclosure for the analyzer.

4. 0.35 meV in-line CDDW monochromator - design and production of elements:
4.1. Production of the long crystals, and quality test.
4.2. Collimator and wavelength selector production, and quality test.
4.3. Thermally stable and homogeneous enclosure for the monochromator.
4.4. Crystal alignment using weak link mechanisms.

5. Development of the computer based multi-sensor temperature control system.

6. Design and procurement of the focusing (5×20µm2) and collimating mirrors (acceptance
7 × 14 mrad2, divergence 0.08 × 0.3 mrad2).
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0.35 meV Prototype IXS Spectrometer: R+D plan

FY08: (selected items)

1. Place order for production of the in-line CDDW monochromator.
2. Place order for production of the multi-segmented CDW analyzer.
4. Fabricate long dispersive crystals elements for the CDDW monochromator.
5. Fabricate long dispersive crystals elements for the CDW analyzer.
6. Fabricate crystals for the C/W elements, and weak link alignment system.
7. Procure and commission strip detector and appropriate software for acquisition and
handling the data.
7. Install and test focusing and collimating mirrors pairs on APS undulator beamline (3ID
or 9ID )
8. Install and test the CDDW monochromator (3ID or 9ID).
9. Install and test the CDW spectrometer (3ID or 9ID).
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