Towards Inelastic X-Ray Scattering Spectroscopy with 0.1 meV Resolution

Yuri Shvyd'ko

Argonne National Laboratory Advanced Photon Source

Content

- IXS spectroscopy: how it works now?
- Angular dispersion as alternative monochromatization principle.
- Angular-dispersive monochromators, analyzers, IXS spectrometers.
- Results from the prototype 0.7 meV device
- Challenges in achieving 0.1 meV resolution
- Proposed R+D plan

IXS spectroscopy with very high resolution ($\lesssim 1 \text{ meV}$) is one of the major techniques for studying vibrational dynamics in condensed matter.

X-ray **monochromators** and **analyzers** with meV- and sub-meV-resolution are the main optical components of the spectrometers.

Modern IXS Spectrometer (layout)

Graef, Materlik (1982)

Burkel, Dorner, Peisl (1987)

Resolution of the IXS spectrometers & count-rates,

ΔE of Bragg back reflections in Si

Undulator spectrum

Low-energy photons would be better:

- Higher count-rates (more photons in the low-energy range).
- IXS applicable at low- and intermediate energy SR facilities.
- Better momentum resolution ΔQ for the same solid acceptance angle $\Upsilon \times \Upsilon$:

$$\Delta Q = \Upsilon K. \qquad K = E/c.$$

• Proximity to K-absorption edges of the important transition metals.

Low-energy photons would be better:

- Higher count-rates (more photons in the low-energy range).
- IXS applicable at low- and intermediate energy SR facilities.
- Better momentum resolution ΔQ for the same solid acceptance angle $\Upsilon \times \Upsilon$:

$$\Delta Q = \Upsilon K. \qquad K = E/c.$$

• Proximity to K-absorption edges of the important transition metals. ... but ...

Employing low-energy photons is in conflict with the principles underlying single-bounce backscattering monochromators and analyzers.

Problem:

Spectral width ΔE of the low-indexed Bragg reflections is too large. Typically $\Delta E > 20$ meV.

New concepts, new solutions are required:

Problem:

Spectral width ΔE of the low-indexed Bragg reflections is too large. Typically $\Delta E > 20$ meV.

Solution:

Use a small fraction of it!

New concept illustrated with optical prism

New concept

D - dispersing element C - collimator W - wavelength selector

An asymmetrically cut crystal behaves like the optical prism dispersing the photons with different photon energies: effect of angular dispersion.

Effect of angular dispersion (1)

$$K_{H} = K_{0} + \tilde{H}$$
$$\tilde{H} = H + \Delta_{H}$$
$$\Delta_{H} = K \frac{\alpha}{\sin(\theta - \eta)} \hat{z}$$

 $lpha \propto 1 - n$

n – refractive index

Effect of angular dispersion (2)

Effect of angular dispersion (3)

$$egin{aligned} & K_H = K_0 + ilde{H} \ & ilde{H} = H + \Delta_H \ & \Delta_H = K \, rac{lpha}{\sin(heta - \eta)} \, \hat{z} \end{aligned}$$
 $egin{aligned} & heta \simeq \pi/2 \ & \delta heta' = rac{\delta E}{E} \, (2 \, an \eta) \end{aligned}$

CDW-Monochromator and its Spectral Resolution

Yu. Shvyd'ko X-Ray Optics, Springer-Verlag (2004)

The smaller the photon energy E,

the smaller is the energy bandwidth ΔE (fortunately!).

Spectral resolution of the CDW-monochromator

$E = 10 \text{ keV} \Rightarrow \Delta E = 10 - 0.1 \text{ meV}$ $E = 5 \text{ keV} \Rightarrow \Delta E = 5 - 0.05 \text{ meV}$

Angular-Dispersive In-line CDDW-monochromator

Angular-dispersive CDDW monochromator: E = 9.1315 keV, $\Delta E = 0.1$ meV, D=Si(008)

Single-bounce backscattering monochromator: E = 31.02 keV, $\Delta E = 0.1$ meV, Si(1 3 27).

- 1. $\Delta E/E$ is independent of E or of Bragg reflection.
- 2. The smaller the photon energy E the smaller is the bandpass ΔE .
- 3. ΔE can be varied by changing η (*E* is fixed).
- 4. The peak throughput T and the angular acceptance $\Delta \theta$

are almost constant (while changing η).

- 5. Steep wings in the spectral function.
- 6. The temperature control and energy tuning is technically not demanding (for x-ray photons in the low-energy region 5 10 keV).

CDW-Analyzer

CDW-Segmented Analyzer

To overcome technical problems, associated with the big length (1-2 m), the dispersing element can be built of several independent segments which need not be perfectly aligned or have precisely the same temperature.

- PSD position sensitive detector D - dispersing elements
- W wavelength selector
- C collimator

Angular-dispersive CDW analyzer: E = 9.1315 keV, $\Delta E = 0.1$ meV, D=Si(008)

Single-bounce backscattering analyzer: E = 31.02 keV, $\Delta E = 0.1$ meV, Si(1 3 27).

The main questions to be addressed:

can we observe the effect of angular dispersion?

and

can we demonstrate a monochromator based on this principle?

Bragg Backscattering from Asymmetrically Cut Crystal

What do we observe?

Shvyd'ko, Lerche, Kütgens, Rüter, Alatas, Zhao, PRL 97 (2006)

Energy Resolution Measurements

Good news: angular dispersion is working both as a physical effect, and the principle of monochromatization.

However: we are measuring $\Delta E = 2.1$ meV instead of a design value of 0.7 meV. Why?

- Crystal imperfection?
- Strain due to mounting?
- Strain due unfavorable crystal shape?
- Insufficient surface flatness?
- Temperature variations along the dispersing element?

Dispersing Silicon Crystal Elements = Long Crystals

- 1. Si of highest quality and purity is required, $\rho \geq 50~{\rm k}\Omega{\cdot}{\rm cm}$. Used: $\rho\simeq 1~{\rm k}\Omega{\cdot}{\rm cm}$
- 2. Strain-free crystals and strain-free mounting are required.

Collimator and Wavelength-Selector

Temperature variations along the dispersing element

- Crystal imperfection? (plausible)
- Strain due to mounting? (plausible)
- Strain due unfavorable crystal form? (plausible)
- Insufficient surface flatness? (plausible)
- Temperature variations along the dispersing element? (no)

The plausible reasons have to be studied experimentally as part of the R+D program.

- The effect of angular dispersion in x-ray Bragg diffraction from asymmetrically cut crystals was observed experimentally.
- The effect of angular dispersion offers a new means for monochromatization of medium energy x-rays (5-10 keV), to meV and sub-meV bandwidths, not limited by the intrinsic widths of Bragg reflections.
- The CDW monochromator for 9.1 keV x-rays was demonstrated. The measured energy bandwidth of the monochromator is 2.2 meV (design value = 0.7 meV).
- Worse than theoretical resolution is attributed to (i) crystal imperfections, (ii) strain due to mounting, etc.
- Next goals: achieve 0.7 meV resolution, build 0.35 meV prototype IXS spectrometer, build 0.1 meV IXS spectrometer for NSLS-II.

Prerequisites for Building a Working Instrument

An IXS spectrometer with 0.1 meV resolution, operating at medium photon energies is feasible. There are no limitations in principal.

Prerequisites:

Identification of the technical problems Resources

Crystal fabrication:

highest quality Si, precisely machined 200-300 mm long crystals (1 mrad precise cuts), precisely machined 60 mm long and 0.2 mm thin crystals (1 mrad precise cuts), strain-free mounting, polishing 20-30 cm long crystals with slope error $\lesssim 0.2$ mrad

Temperature control:

temperature homogeneity and stability 0.5 mK (=0.01 meV)

Multi-crystal alignment:

CDW analyzer with up to 10 crystal segments, parallel to $50~\mu$ rad

Collimating optics:

divergence $\lesssim 50~\mu$ rad

Timeline for Developing a 0.1 meV IXS spectrometer

Scope: To develop an IXS spectrometer with 0.1 meV resolution, operating at medium photon energies at NSLS-II

FY07-08: Develop prototype spectrometer for 9 keV x-rays with a resolution of 0.35 meV at APS.

FY09: Install and test prototype spectrometer at APS.

FY10: Engineering design for 0.1 meV spectrometer based on lessons learned.

FY11-12: Fabricate 0.1 meV spectrometer.

FY13: Commission 0.1 meV spectrometer at NSLS-II.

0.35 meV Prototype IXS Spectrometer: R+D plan

FY07: (selected items)

1. Redo crystals to achieve design resolution (0.7 meV) of the existing CDW test monochromators.

2. Dynamical theory simulations of the 0.35 meV CDDW in-line monochromator and CDW segmented analyzer.

- 3. 0.35 meV segmented CDW analyzer design and production of elements:
 - 3.1. Production of the long crystals, and quality test.
 - 3.2. Multi-crystal alignment using micro- and nano-positioning systems.
 - 3.3. Construct and built multi-crystal pre-alignment arrangement.
 - 3.4. Thermally stable and homogeneous enclosure for the analyzer.
- 4. 0.35 meV in-line CDDW monochromator design and production of elements:
 - 4.1. Production of the long crystals, and quality test.
 - 4.2. Collimator and wavelength selector production, and quality test.
 - 4.3. Thermally stable and homogeneous enclosure for the monochromator.
 - 4.4. Crystal alignment using weak link mechanisms.
- 5. Development of the computer based multi-sensor temperature control system.
- 6. Design and procurement of the focusing $(5 \times 20 \mu m^2)$ and collimating mirrors (acceptance $7 \times 14 \text{ mrad}^2$, divergence $0.08 \times 0.3 \text{ mrad}^2$).

0.35 meV Prototype IXS Spectrometer: R+D plan

FY08: (selected items)

- 1. Place order for production of the in-line CDDW monochromator.
- 2. Place order for production of the multi-segmented CDW analyzer.
- 4. Fabricate long dispersive crystals elements for the CDDW monochromator.
- 5. Fabricate long dispersive crystals elements for the CDW analyzer.
- 6. Fabricate crystals for the C/W elements, and weak link alignment system.
- 7. Procure and commission strip detector and appropriate software for acquisition and handling the data.
- 7. Install and test focusing and collimating mirrors pairs on APS undulator beamline (3ID or 9ID)
- 8. Install and test the CDDW monochromator (3ID or 9ID).
- 9. Install and test the CDW spectrometer (3ID or 9ID).

Ulrich Kuetgens PTB Braunschweig, Germany

Hans Dierk Rüter Hamburg University Germany Michael Lerche University of Illinois Urbana-Champaign, USA John Hill Scott Coburn NSLS-II BNL, USA

Ahmet Alatas Jiyong Zhao

Advanced Photon Source ANL, USA

