Development of Ceramic Composites as SOFC Anodes

Olga A. Marina Pacific Northwest National Laboratory Richland, WA 99352 USA

Presented by Jeff W. Stevenson

SECA Core Technology Program Review Meeting Albany, NY, September 30, 2003

Existing Technology: Nickel-YSZ Anode

Advantages

- High electronic conductivity
- Excellent activity for clean reformed fuels
- Chemically and physically compatible with YSZ electrolyte
- Relatively inexpensive

Disadvantages

- Sintering / agglomeration during operation
- Sensitive to oxygen
- Too high activity towards steam reforming
- Coking in hydrocarbons
- Easy poisoning by sulfur

Toxic

<u>Objective</u>: Develop a high-performance anode that offers higher tolerance to oxidizing, hydrocarbon-containing and sulfur-containing environments

Approach

Synthesis and characterization of candidate oxides

- Glycine-nitrite synthesis \Rightarrow
- Calcination at 1200°C \Rightarrow
- XRD analysis \Rightarrow
- Attrition milling \Rightarrow
- Electrode ink \Rightarrow
- Screen printing on YSZ \Rightarrow
- Sintering at 900-1200°C
- Evaluation of the electrical, thermal and thermomechanical properties
- 2- and 3-electrode cell tests

2-electrode and 3-electrode configuration

Ceramic anode properties

La-doped SrTiO₃

- Reasonable electrical conductivity (up to 15 S/cm)
- Dimensional and chemical stability under red-ox cycling
- TEC compatibility with other cell components
- Good adhesion to YSZ at relatively low temperatures

T=850°C in wet H_2 *vs. Pt/air*

But....

Low catalytic activity for hydrogen oxidation

Effect of cerium oxide addition

2 phase anode: Titanate/Ceria composite

Electronic conductivity provided by doped titanate.

Activity towards fuel oxidation provided by ceria.

TEM Analysis of 2-phase ceramic anode

Diffraction pattern obtained from a typical "broad" area of La-Sr-Ti-Ce-O (35 mol% of La (Asite basis) and 15 mol% of Ce (B-site basis)) confirms presence of 2 phases. The SrTiO₃ reference pattern is superimposed in blue (bottom left) and that of CeO₂ is imposed in red (bottom right).

Composite Sr(La)TiO₃ – Ce(La)O_{2- δ} anodes

I. Single combustion synthesis

- Simultaneously co-synthesized in the same reactor vessel from an aqueous glycine/nitrate solution
- Excellent activity for electrochemical H₂ oxidation
- Withstand multiple reductionoxidation cycles
- Tolerate exposures to hydrogen sulfide
- TEC compatibility with other cell components

T=750°C (1) $H_2/H_2O/N_2=77/3/20$ (2) $H_2/H_2O/N_2=77/3/20+$ 6ppm H_2S

Thermal Redox Cycling

I: Exposure to reducing environment at 800°C (corresponding to SOFC anode environment during operation)

II: Exposure to air during thermal cycling (corresponding to conditions an unprotected anode would experience during system startup and shutdown)

Composite Sr(La)TiO₃-Ce(La)O₂ anode

Cerium oxide addition to Sr(La)TiO₃ results in remarkable improvement in the performance

Electrolyte-supported cell (160 μ m YSZ) Fuel: H₂/H₂O=97/3 Oxidant: air Electrolyte: 150 μ m YSZ

Composite Sr(La)TiO₃ – Ce(La)O_{2- δ} anodes

II. Mixing of separately prepared powders

- Tailoring of the individual phases for optimized composite performance
- Adjusting the amount of dopant in each oxide (to optimize electronic conductivity and/or mixed conductivity).
- Similar electrocatalytic activity for hydrogen oxidation in the temperature range 700-900°C

Polarization resistances of composite anodes in $H_2/H_2O=97/3$. 1is x=0.25, y=0.5 (50:50); 2 - x=0.35, y=0.3 (50:50); 3 - x=0.35, y=0.5, (60:40); 4 - x=0.25, y=0.3 (50:50); 5 - x=0.25, y=0.3 (60:40), 6 - x=0.25, y=0.4 (70:30).

Polarization curves of composite anodes

Co-synthesized Sr(La)TiO₃-Ce(La)O₂, where Ti/Ce=9, and mixed Sr_{0.65}La_{0.35}TiO₃-Ce_{0.5}La_{0.5}O_{2- δ} (60:40 molar ratio) composite anodes tested vs. Pt/air at H₂/H₂O=97/3.

It is possible to achieve comparable or improved properties with mixed powder anodes.

Polarization curves of a composite anode in wet hydrogen vs. Pt/air after several oxidation-reduction cycles

Effect of oxidation-reduction cycles on the cell area specific resistance at 0.7 V

Effect of H₂S addition to the hydrogen fuel at 800°C

- Only minor change in performance after operating for 400 hs in the presence of 26 ppm H₂S
- Not affected by short-term exposures to 190 ppm H₂S in N₂
- No sulfur compounds detected by the post-mortem EDS/XRD examination

Methane and CO oxidation at 800°C

- Lower activity for CO and CH₄ oxidation in respect with H₂ oxidation
- No degradation in performance after testing in "dry" methane (3%H₂O) for 20 h
- No anode sooting after operating at CO/H₂O=22/3 for 120 h and CH₄/H₂O=22/3 for 41 h
- Immediate return to the initial performance if exposed to H₂

Summary

Doped strontium titanate - doped ceria ceramic composites

- Demonstrate excellent performance in hydrogen in the temperature range 750-850°C
- Operable in hydrogen at low temperatures (600-700°C)
- Exhibit excellent tolerance to oxidizing environments
- Resistant to carbon deposition in "dry" methane and CO
- Tolerant to sulfur poisoning

All-ceramic anode shows good promise for use in SOFCs

Limitations for the practical application of the composites as SOFC anodes

Low electrical conductivity for use as self-support

- Potential reactivity with the YSZ electrolyte at high processing temperatures
- Loss of electrocatalytic activity following high processing temperatures

• Contact: <u>olga.marina@pnl.gov</u>; phone: (509)-375-2337

Future work

- Evaluation/optimization of two-phase anodes prepared by mixing doped titanate and ceria powders
- Long-term anode testing for sulfur and carbon tolerance
- Anode tests on a variety of hydrocarbon fuels
- Scale-up testing to include larger dimension cells

Acknowledgements

Financial support from the SECA Core Technology Program, U.S. Department of Energy, National Energy Technology Laboratory (NETL)

Contributors:

Jeff Stevenson

Steve Simmer

Kerry Meinhardt

Matt Walker

Larry Pederson

Prabhakar Singh