

CERCANAM® Insulation for Solid Oxide Fuel Cells

B. Nair, A. Akash, J.Nachlas, K. Cameron S. Elangovan, M. Timper and J. Hartvigsen Ceramatec, Inc.

Supported through SBIR Phase I Grant No. DE-FG02-03ER83619 Presented at The SECA Core technology Program Workshop Albany, NY September 30, 2003

Requirements for SOFC Insulation

- High temperature thermochemical stability in air and fuel atmosphere (physical, chemical, microstructural)
- Very high heat transfer resistance
 - Low thermal conductivity
 - Low convective heat transfer through pores
 - Minimization of heat transfer through radiation
- Ability to fabricate in near-net shape
- Low cost

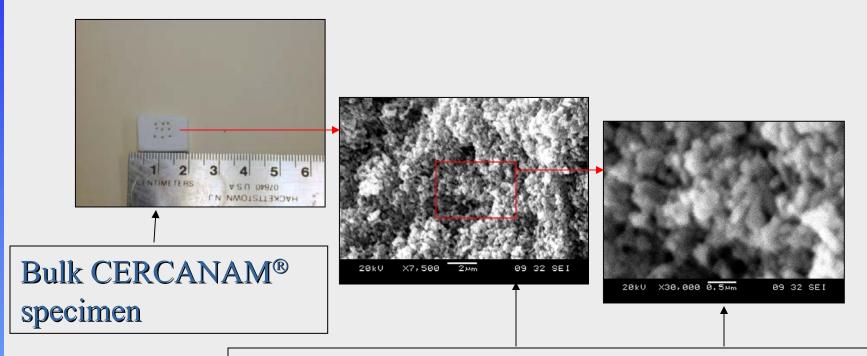
Limitations of Commercial ADVANCED MATERIAL Insulation for SOFC Applications

- Low cost insulation materials:
 - > Contain silica
 - > Evolve SiO on exposure to H_2O at high temperatures
 - SiO degrades the electrodes and puts limitations on longterm SOFC performance.
- Conventional high-alumina (low-silica) insulation:
 - Requires very high-T sintering
 - Very high fabrication and machining costs

CERCANAM® Materials

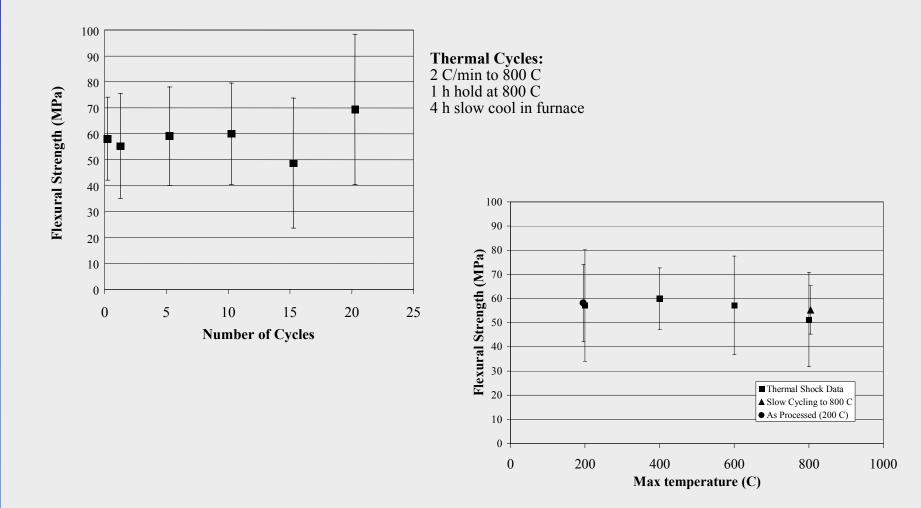
•CERCANAM:® <u>CER</u>amatec <u>CA</u>stable <u>NA</u>no-<u>M</u>aterials

- Feasibility of microfabrication with very high dimensional tolerance.
- > Near net-shape processing with minimal post-machining.
- > Technologically simple, one-step processing even for complex geometries that would require multiple-step processing with other technologies/materials.
- Significantly lower processing costs and production times for complex geometries.
- Scalability to large volume production with very high component production rates.



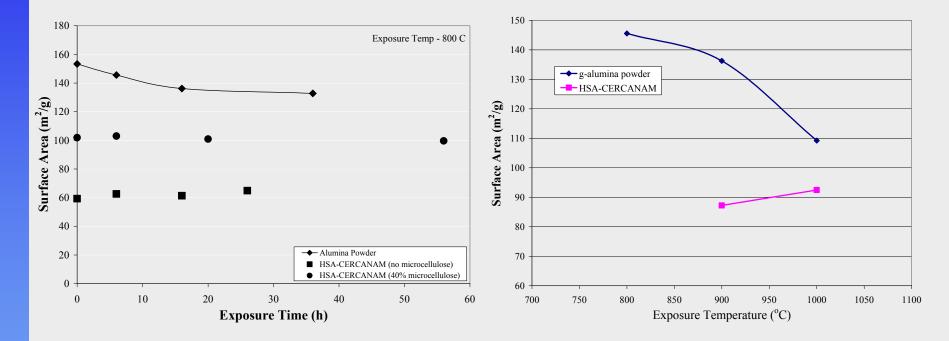
Benefits of CERCANAM® for SOFCs

- Ultra-low silica composition
- Low cost
- Excellent thermal cycling/thermal shock properties up to at least 1000°C.
- Thermochemical stability at least up to 1000°C.
- Microporous/nanoporous structure gives excellent heat transfer resistance without compromising thermal shock properties.
- Flexural strength can be as high as 60-70 MPa (Lower at higher porosity).


Microstructure of CERCANAM® Materials

Net-worked sub-micron and nano-porosity in cast CERCANAM[®] which can result in over $100 \text{ m}^2/\text{g}$ component surface area

Thermomechanical Properties of CERCANAM[®]

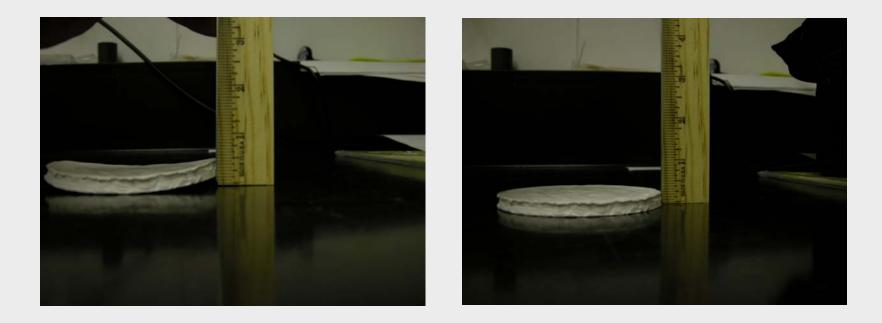


ceram

ADVANCED MATERIALS & ELECTROCHEMICAL TECHNOLOGIES

CERCANAM® Thermal Stability

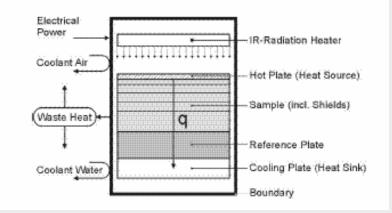
CERCANAM[®] retains its surface area up to 1000°C, while γ -Al₂O₃ does not.


Phase I Program Goals

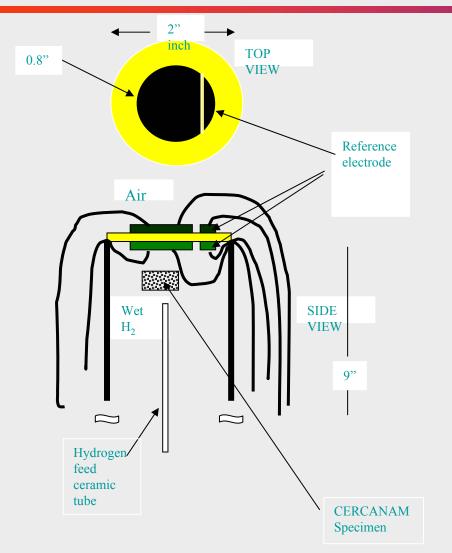
- Fabricate 6" × 6" × 1/4-1/2" CERCANAM plates with minimal post-machining
- Demonstrate the thermal shock resistance and thermal cycling resistance of 6" × 6" × 1/4-1/2" CERCANAM plates at temperatures up to 850°C.
- Demonstrate the intermediate term (500 h) thermochemical stability of CERCANAM materials in high-temperature air, hydrogen and reformate environments.
- Demonstrate the stability of short-term (100 h) stability of SOFC anodes and anode/electrolyte interfaces in fuel passed over CERCANAM at 850°C.
- Evaluate heat transfer resistance of CERCANAM materials and laminates/graded structures through a modified gaurded hot-plate technique technique.
- Generate raw-material cost vs material property databases.

CERCANAM® Warpage Minimization

- CERCANAM warpage can be minimized by pressing green bodies with plasticizer added.
- Upon firing, CERCANAM materials retain their green dimensions and shape.

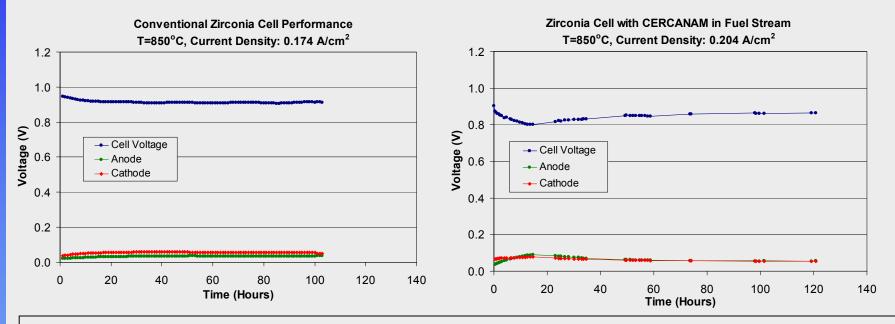


Heat Transfer Resistance Measurements


- Heat transfer resistance measurements will be made using a modified guarded hot-plate apparatus
- Design modifications will be made such that conduction, convection and radiation components can be taken into considerations

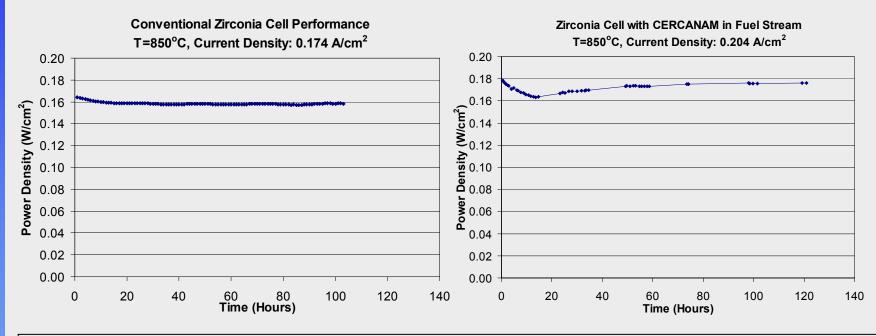
<u>Gaurded Hot-Plate</u> <u>Apparatus Schematic</u>

Cited from: "Experimental and Theoretical Studies on High-Temperature Multilayer Insulation," M. Spinnler, E.R.F. Winter and R. Vishkanta, 26th International Thermal Conductivity Conference Proceedings.


SOFC Performance with CERCANAM[®] in Fuel Stream

- Experiment designed to study if the presence of CERCANAM on the hot fuel side of an SOFC has any adverse effects on long-term steady-state cell performance.
- Over 120 hours of testing done (test still in progress).

Performance of SOFC with ADVANCED MATERIALS & ELECTROCHEMICAL TECHNOL CERCANAM[®] piece in the fuel stream


Cell Voltage Vs Time

- Steady state cell voltages are different due to different current densities
- The voltages of the cell with CERCANAM subsequently stabilized and approached steady state with no obvious long-term degradation
- Initial drop in cell voltage probably related to moisture evolution from CERCANAM

Performance of SOFC with ADVANCED MATERIALS & ELECTROCHEMICAL TECHNOL CERCANAM[®] piece in the fuel stream

Power Density vs Time

- The initial trend in cell voltage due to moisture evolution is also reflected as an initial decrease in power density
- The power density of the cell with CERCANAM subsequently increased and approached steady state with no obvious long-term degradation

Ongoing and Future Work

- SOFC performance studies with and without CERCANAM[®] in the fuel stream in similar cells at the same current density
- Thermochemical stability experiments of CERCANAM[®] in air and fuel
- Experiments to determine heat transfer resistance of CERCANAM[®] with and without metallic shielding layers.
- Materials cost vs materials performance databases

Timeframes for TechnologyceramationAdvanced materials a electrochemical techDevelopment and Commercialization

- 6/2003-5/2004 Phase I: Feasibility Demonstration
- 7/2004-7/2006 Phase II: Process optimization, prototype development
- 2005-2007 Phase III: manufacturing process development, scale up
- From 2007 Onwards: Commercial sales of custom net-shape insulation to SOFC manufacturers

Technology Development and Commercialization Goal

Ceramatec's goal is to interact with SECA vertical teams during the Phase I project, and develop teaming arrangements for Phase II (prototype development and integration into SOFC stacks at partner sites) and **Phase III** (Commercialization). After successful completion of the Phase I and Phase II projects, Ceramatec will be able to offer a line of custom-sized net-shape CERCANAM® insulation components to SOFC manufacturers, based on specifications supplied by them, ready for integration into commercial SOFC systems.

Acknowledgement

This program is funded by U.S. DOE Grant No. Grant No. DE-FG02-03ER83619. Some of the earlier results presented here were generated through other grants from the NSF (DMI-0128326) and the U.S. Navy (N68335-02-C-3058), which were to develop CERCANAM® materials for other applications, namely microchannel devices for hydrogen generation and fiber optic connectors.