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SOFC Power-Conditioning System Modeling
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Transient SOFC Response to Electrical 
Stimulus: Modeling Approach

� Reactants� inlet flow rates 
and properties are invariant 
during relatively short 
transient episode

� Fuel stream effects are 
dominant

� Quasi-steady-state 
electrochemistry

� Lagrangian extension of 
validated steady-state model 
to track fuel parcels that 
travel over electroactive 
area
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Potentiostatic Control (Power Increase)

� Current spikes up, yet the fuel 
supply remains invariant due 
to the decoupling of the cell

� Fuel utilization thus increases; 
this causes current (and power) 
to decrease from t*=0+ values, 
until a new steady state 
“match” occurs at the new 
voltage (t*=1)

� Attainment of steady state at 
the time constant {T = Lcell/vfuel}



Impact of Electrical Stimulus:
Galvanostatic Control (Power Increase)

� Duality of potential drop seen: 
polarization curve effect and 
subsequent fuel depletion effect

� Multiple voltage reductions are 
“seen” by the reactant streams 

� Transient is thus longer by 
multiples of the time constant 

� Larger initial fuel utilizations 
prolong the relative transient due 
to enhanced fuel depletion effects
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Leveraging Approach to Planar Cells

- Initial attempt at seed 
simulation of vertical team 
developmental cell {GE, 
SECA Annual Mtg., 4/03, 4 
3/8” diameter cell}

- Initial and final 
conditions match reported 
data

- Trends corroborate those 
of the tubular results

Seed Case Study: Potentiostatic Stimulus 
(0.8V to 0.6V) 
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RAM Issues of “Real World” Operating 
Conditions

2 2CO CO C s→ + ( )
CO H H O C s+ → +2 2 ( )
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BOPS Modeling: Summary

!Development of dynamic heat transfer, thermodynamic, kinetics, 
and physical models for each component of the BOPS:

"Compressor, expander, heat exchangers, steam generator, reformer, 
and fuel storage

!Implementation of models in a dynamic-programming 
environment using state-of-the-art transient numerical solver

!Integration of BOPS component models into a BOPS sub-system 
model

!Parametric studies (trade-off analyses) of best-practice control 
strategies for continuous operation and start-up and shut-down



BOPS: PARAMETRIC STUDIES

Pre-reformer Thermal Transient Response for FU Perturbations 
(SMR = 3.4 & FRR = 0.30 constant)
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� Power demand perturbation
� Power-demand and system-level parameter 

perturbations
� Small changes in power demand with floating 

fuel utilization
� Power demand perturbation with 

temperature control
� Total system efficiency analysis
� Start-up and shut-down

Outline

Methane Compressor Thermal Transient Response For 
SMR Perturbations (FU=0.85, FRR=0.3 constant)
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BOPS: PARAMETRIC STUDIES

System Thermal Efficiency for Pre-reformer
 Inlet Gas temperature Control 
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PES Modeling and SOFC PCS System Interactions: Summary

! Development of nonlinear switching models of PES
! Integration of SOFC, PES, and BOPS models to develop a 

comprehensive SOFC PCS model
! Development of  reduced-order models for fast and convergent 

simulations on a PC
! Investigated the impact of PES low- and high-frequency current 

ripples and the effects of load-transients on SOFC performance
! Analyzed the impact of SOFC-output-voltage variations on the 

dynamics and stability of PES using bifurcation analysis
! Investigated effects of PES control and modulation strategies on

SOFC performance
! Conducted a preliminary trade-off study to determine the optimal size 

of a energy-storage device (comprising a battery and a pressurized 
hydrogen fuel tank) to cost-effectively improve PCS transient response 

! Designed a (low-cost) novel zero-ripple, energy-efficient, reduced-
voltage-stress, and direct energy-conversion PES 



PES Topological Models

Self-Commutated Voltage-Source InverterLine-Commutated Current-Source Inverter
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SOFC PCS Steady-State Interaction Analyses

� Hydrogen utilization increases 
with the increase in load 

� Current ripple has effect on 
the hydrogen utilization at
high load conditions

� Low-frequency ripples do not 
necessarily lead to increased 
fuel utilization unless their 
magnitude is high

� For high loads, rise in the 
temperature observed at low 
frequencies (high temperatures 
can cause interaction between SOFC 
electrolyte and electrodes leading to 
formation of high resistivity material 
and high microcrack densities)

Effect of Ripple Factor and Current Amplitude

Effect of Frequency and Current Amplitude



Novel SOFC PES

AC/AC HF Inverter 

Zero Ripple 
Boost

Control

Power supply

FEATURES:
� Direct power conversion
� Reduced device voltage stress 
� High energy efficiency
� Minimize SOFC output-current ripple
� Filter size and weight 50% less than    
conventional filter

� Cost effective
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Novel SOFC PES

SOFC Output Current
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SOFC PCS Load-Transient Interaction Analyses
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Load-Transient Mitigation Techniques

Inverter Modulation Strategies
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! Pressurized Hydrogen Fuel Tank and 
Battery

# Instantaneous supply of additional energy 
requirement from SOFC stack

! Inverter Modulation Strategies
# Space-vector modulation (SVM) vs sine-wave 

PWM (SPWM) used for the inverter 
# Battery acts as a stiff voltage source, providing 

additional energy requirements during transients
# Slower boost converter voltage-controller 

response to prevent immediate change in SOFC 
energy demands 



Nonlinear Hybrid Controller for DC-DC Boost Converter
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! FEATURES
# Hybrid control concept 

based on combining 
integral-variable-structure 
control (IVSC) scheme and 
multiple-sliding-surface 
control (MSSC)

# Excellent steady-state and 
transient responses even 
under parametric variations 
and under perturbations of 
SOFC stack voltage and 
load 

# Controller eliminates the 
bus-voltage error with a 
reduced control effort

# Control scheme can reduce 
the impact of very high-
frequency dynamics due 
to parasitics on an 
experimental closed-loop 
system 



Phase-II Objectives

! Develop and enhance fully transient nonlinear and temporal models for a variety 
of PES and BOPS components and for planar SOFC stacks 

! Experimental validations of interaction-analyses results

! Develop capabilities for analyzing long-term performance and durability of  
SOFC planar and tubular stacks due to their system interactions with the PESs
and application loads and the BOPSs

! Develop cost-effective optimal PES designs and design guidelines for (i) 
mitigation of electrical feedbacks on SOFC stack and (ii) technology transfer to 
SECA industry team

! Develop transient PES and PCS models and load profiles for vehicular APUs for 
performance and reliability analyses

! Develop optimal control and modulation strategies for robust PES and BOPS 

! Develop decomposition techniques for optimizing PCS with respect to cost, 
reliability, size (power density), and response time
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