Project Manager: **Dr. Lane Wilson** DOE National Energy Technology Laboratory

Meilin Liu

Center for Innovative Fuel Cell and Battery Technologies School of Materials Science and Engineering Georgia Institute of Technology

September 30 - October 1, 2003

The Research Team

- Rupak Das and <u>Robert Williams</u> (NSF Fellow)
 - Modeling/simulation of FGE
- Erik Koep and <u>Chuck Compson</u> (NASA Fellow)
 - Patterned Electrodes
- Qihui Wu and <u>Harry Abernathy</u> (NSF Fellow)
 - In-situ Characterization: FTIR/Raman, IS, GC/MS
- Ying Liu and Yuelan Zhang
 - Fabrication of FGE and performance testing

Outline

- Technical Issues Addressed
- R&D Objectives & Approach
- Results to Date
 - Modeling of Functionally Graded Electrodes
 - Patterned Electrodes
 - In-situ Characterization Techniques
 - Fabrication of Graded Electrodes
- Applicability to SOFC Commercialization
- Activities for the next 6-12 Months

Critical Factor: Interfacial Resistance

Origin of R_P for a Porous MIEC Electrode

The Concept of FGE

Macro-porous structure Large pores for fast Transport High Electronic Conductivity Compatible with Interconnect

Inter-Mixed Layer Produce Turbulence Flow

Nano-porous structure Highly Catalytic Active Compatible with electrolyte

Atomic/Molecular Level Steps Involving O₂

A probable model of O₂ reduction on MO

Critical Issues

- Intrinsic Properties of MIEC Cathodes
 - Fundamental processes at the surfaces?
 - Effect of surface defects/Nano-struture?
 - Effect of ionic and electronic transport?
 - In-situ characterization tools and predictive models?
- Effect of Microstructure/Architecture
 - Surface area/reaction sites
 - Rapid gas transport through pores
 - Predictive models for design of better electrodes
- Fabrication of FGE with desired microstructure and composition

Objectives

- To develop novel tools for *in-situ* characterization of surface reactions;
- To gain a profound understanding of the processes occurring at cathode-electrolyte interfaces; and
- To rationally design and fabricate efficient cathodes for low temperature operation to make SOFC technology economically competitive.

Technical Approach

Modeling of Functionally Graded Electrode

1st Order Approximation Ionic Transport Limited

Dense Electrolyte

Key Input Parameters:

Porosity Pore Size and Size Distribution Grain Size and Size Distribution

Diffusivity/Tortuosity Knudsen Diffusion

Effective Ionic Conductivity Effective Electronic Conductivity Ambipolar Conductivity

Exchange Current Density Cathodic Transference Numbers

Tape Cast Substrates for Patterned Electrodes

Low cost, reproducible, and easy scale-up Great Flexibility: Co-casting of multi-layers of different materials

Microstructures of Patterned Electrodes

2 µm Pt Lines

10 μm SSC Lines50 μm Pt Current Collector

Raman Spectra of Thin Film SSC Electrodes

While initial thin film resembles SSC standard, the surface structure changes upon heating.

O₂ Reduction On a Metal Oxide

Probable surface reaction models

Possible Surface Reaction Processes

In-Situ Characterization Techniques

Gas Switching Effect

Catalytic Properties of Cathode Materials

Maximum O_2^- signals for cathode materials at 600°C in 1% O_2 atmosphere

Rates of Adsorption/Desorption

Height of 1124 cm⁻¹ peak during gas witching experiment for different materials at 600°C.

First derivative of 1124 cm⁻¹ peak height vs. time curve

Reactivity for oxygen adsorption and desorption : SSC ≥ LSF > LSC

Gas Switching Effect

Height of 1124 cm⁻¹ peak during gas switching experiment for SSC at different temperatures.

First derivative of 1124 cm⁻¹ peak height vs. time curve for SSC at different temperatures

Reaction rate: $700 \ge 650 \ge 600$

Temperature is not a significant parameter for oxygen adsorption but is for oxygen desorption

Temperature Effect

1% Oxygen

Height of 1124 cm⁻¹ peak during gas witching experiment for LSF and LSC at different temperatures.

LSF and LSC show different temperature dependence for oxygen adsorption and desorption

Effect of Oxygen Partial Pressure

Technology

The intensity of 1124 cm⁻¹ peak at different temperatures and in different atmospheres for LSF electrode

Peroxide Peak at High Po₂

The FTIR spectra of an SSC pellet at different temperatures in oxygen

High O_2 concentration $\rightarrow O_2^{2-}$: 873cm⁻¹

Kinetics for Superoxide and Peroxide lons

 O_2^- and O_2^{2-} : fast adsorption

O₂²⁻: slowly reach the max Faster desorption

Normalized height of 1124 cm⁻¹ and 875 cm⁻¹ peaks during gas switching experiment from Ar to O_2 and back to Ar.

Conclusions – Time-Dependent FTIR-ES

- The active sites for the oxygen reduction (oxygen adsorption) is not limited to the triple boundaries, but extended to surfaces of the MIEC electrodes.
- As expected, different cathode materials have different catalytic activity for the oxygen adsorption and desorption. In particular, SSC appears to have the highest activity for oxygen adsorption while LSF has the fastest kinetics for the oxygen desorption.
- The saturation partial pressure of oxygen is about 20% for the FTIR measurements.
- The intensity of the peroxide peaks are much weaker than those of the superoxide peak. The formation rate of peroxide species appears to be as fast as that of superoxide; however, there is some delay for peroxide to reach the maximum point. The desorption of peroxide is much faster than that of superoxide.

Fabrication of Functionally Graded Electrodes

- Templated Synthesis
- Combustion CVD

Schematics – Templated Synthesis

Preliminary Results

• SEM pictures

PMMA template

Porous GDC-SSC MIEC

Preliminary Results

Walls consist of particles of about 100 nm in diameter

Porous GDC-NiO MIEC

Combustion CVD

Nano Box-Beams of Semiconductor SnO₂

Effect of Deposition Temperature

Deposition Time: Microstructures

Deposition Time: Thickness and R_P

Effect of Concentration

Effect of Substrate (Electrolyte)

An SOFC Fabricated by CCVD

Anode Ni +SDC

250 μm GDC 100.0 um

Cathode SSC+SDC

Interfacial Resistances and Performance of an SOFC supported by 250 µm GDC

Functionally Graded Electrodes

GeorgiaInstitute of **Tech**nology

Performance of an Anode-Supported Cell with Cathode by CCVD

30 µm Electrolyte

Nano-structured Electrodes by Combustion CVD

Functionally Graded Cathode (fabricated on 250µm YSZ) by CCVD, along with the EDS dot mapping of Mn and Co element distributions

Impedance Spectra/Resistance – Combustion CVD

Georgialnstitute of Technology

Fuel Cell Performance – Combustion CVD

250 µm Electrolyte 1.1 850°C Ο 600 1.0 800°C ☆ $\circ \circ$ Ο 0.9 Ο 750°C ∇ \bigcirc 500 700°C O \diamond \bigcirc 8.0 Ο 650°C Δ Power density, mW/cm Ο 0.7 600°C 400 ☆ 0 Voltage, V ☆ 0.6 Ο ☆ Ο 300 ☆ 0.5 ☆ Ο 0.4 ☆ 0 200 0.3 Ο 0.2 100 \cap 0.1 0.0 0 400 1200 2400 800 1600 2000 0 Current density, mA/cm² Georgia

Tech

NTEOL

Summary of Accomplishments

- Started 3-D Modeling of graded multi-layer cathodes
- Started Microscopic modeling of surface reaction processes
- Developed micro-fabrication techniques capable of producing MIEC electrodes (SSC and LSM) with well-defined geometries
- Understanding of reduction mechanisms on different cathode materials using in-situ characterization techniques
- Used Raman spectroscopy to better characterize surface structures of electrodes under practical operating conditions
- Used combustion CVD and templated synthesis to produce vastly different microstructure and morphologies of porous mixed-conducting electrodes
- Demonstrated cathodes of lowest polarization resistances for low temperature SOFCs

Applicability to SOFC Commercialization

- Generated some basic understanding of electrode reaction mechanisms in an effort to better design of efficient electrodes
- Developed new tools for in-situ determination of electrode properties under practical conditions
- Developed new architectures/microstructures of porous MIEC electrodes using combustion CVD and templated synthesis

Activities for the Next 6-12 Months

- Fabrication and evaluation of patterned MIEC electrodes with active phase and finer features
 - \rightarrow Reaction sites, pathway, and mechanism
- Refine Macroscopic and Microscopic Models
 - → Optimum Microstructure/Architecture
- Optimization of templated synthesis and combustion CVD for fabrication of FGEs
- Development of new in-situ characterization tools for investigation of SOFC reactions

 \rightarrow AFM/STM integrated with Raman spectro-microscope to achieve chemical mapping at nano-scale

 \rightarrow AFM/STM integrated impedance spectroscopy to acquire impedance spectra of individual grains and individual grain boundaries between dissimilar materials

GeorgiaInstitute of **Tech**nology

Lane Wilson, NETL/DoE

SECA Core Technology Program Dept of Energy/National Energy Tech Laboratory DARPA/DSO-Palm Power Program Army Research Office/DURIP

Center for Innovative Fuel Cell and Battery Technologies, Georgia Tech

