

Novel Materials for Obtaining Compliant, High-Temperature Seals for SOFCs

SECA Core Technology Program Ceramatec, Inc.

Supported in part by US DOE Phase I SBIR DE-FG03-02ER83385

C. Lewinsohn, S. Quist, and S. Elangovan Presented at Albany, NY 01 October 2003

Seal Requirements

- > Low leak rate: good adhesion, high density.
- > Ability to withstand thermal cycling/CTE match with cell components.
- > Compatible with cell materials.
- Environmental stability in oxidizing and reducing conditions.
- > No negative effect on cell performance.
- > Acceptable cost.

Mechanical behavior of seals – FEA analysis

> 10 x 10 cm stack
 > Upper surface unconstrained sed stress t = 0.00000e+00
 > Bottom surface fixed in vertical direction
 > Symmetric boundary conditions on cut planes
 > Stresses calculated for cooling from fabrication temperature 01 October 03

FEA model

Material Properties

Component	E (GPa)	ν	CTE (ppm °C ⁻¹)
Interconnect	200	0.29	12
Electrolyte	185	0.31	11
Seal	20, 100, 200	0.20	11

Stress free temperature: 1000°C Seal dimensions: 50 microns thick, 1 cm wide

Seal Stresses – FEA analysis

Electrolyte Stresses – FEA analysis

Electrolyte Stresses – FEA analysis

Seal compliance doesn't significantly affect electrolyte stresses, since weight of stack constrains displacements.

SECA CTP Albany, NY

Seal material selection

Compliant materials, with required properties, have low strength.
 High strength materials, with required properties, have low compliance.
 Composite seals combine benefits of high-temperature materials and compliant materials.

Seal designs can also be used to modify stress states.

SECA CTP Albany, NY

Thermal Shock

$R' = k\sigma_{max}(1-\nu)/(E\alpha)$

composition	k (W/m-K)	E (GPa)	α (ppm-C ⁻¹)	ν	σ _{max} (MPa)	R'
silicate	1	75	10	0.2	60-100	85.3
SiCN	10	120	10	0.2	160-200	1200

Amorphous, non-oxide-based seal materials should have significantly higher resistance to thermal shock and, hence, thermal cycling.

Preceramic polymer precursor derived seals - rationale

- Allows for introduction of a variety of fillers and additives that provide for thermophysical compatibility and mechanical compliance.
- Leads to formation of chemically inert, microstructurally stable, nonreactive (w/SOFC components) amorphous, non-oxide materials with enhanced mechanical properties compared to alternative, high temperature materials.
- Allows liquid and polymeric processing methods dip coating, spray coating, molding, injection, etc.
- ➢ Relatively low processing temperature (900 1000°C).
- > Suitable for intermediate and high temperature operation.

SECA CTP Albany, NY

Seal Fabrication

Test seals - fabrication

Application

Pyrolysed seals

High thermal expansion, inert fillers used to control CTE

Composition	Temperature Range (°C)	CTE (ppm °C ⁻¹)
8 mol% yttria-doped zirconia	25-1000	10.6-11.1
polycarbosilane/Metal 1	200-700	10.0
polycarbosilane/Metal 2	200-700	7.0
polycarbosilane/Metal 3	200-700	9.0
polycarbosilane/Ceramic 1	200-700	7.0
polycarbosilane/Glass 1*	200-600	7.0
polycarbosilazane/Metal 1	200-600	10.0
polycarbosilazane/Metal 2	200-700	5.0
polycarbosilazane/Metal 3	200-700	10
polycarbosilazane/Ceramic 1	200-700	8.0

* Glass provided by Dr. R. Loehman, Sandia National Laboratory, Albuquerque, NM..

Compatibility with SOFCs

> Preliminary results indicate cell performance is not affected by the presence of seal material in the fuel stream

SECA CTP Albany, NY

Leak rate

Substrates	Leak rate (sccm/cm)
Zirconia electrolyte/zirconia electrolyte	1.3 x 10 ⁻³ *
Zirconia electrolyte/metal interconnect	1.9 x 10 ⁻³
Metal interconnect/metal interconnect	2.7 x 10 ⁻²
Alumina/inconel sealed w/compressive, hybrid mica seal (PNNL data measured at 800°C)	1.6 x 10-4

>Seals tested without applied, compressive force

* Same as for a proprietary glass seal w/matched thermal expansion but higher reactivity with ceramic SOFC components.

SECA CTP Albany, NY

Leak rate – effect of thermal cycling

>Very little degradation in leak rate due to thermal cycling

Seal performance

4 cm manieter SOFC tests			
Temp. (°C)	polycarbosilane + metal filler	polycarbosilane + ceramic filler	
800	1.038 V	1.065 V	
850	1.030 V	1.052 V	
900	1.008 V	1.042 V	
	cooled to 50°C		
800	1.031	1.073	
850	0.992	1.062	
900	0.949	1.050	

1 am diamatan SOFC tasta

SECA CTP Albany, NY

Summary

- >Pyrolysis of preceramic polymer precursors offers a promising method for sealing SOFCs.
- >Fillers and partial-pyrolysis can be used to mitigate shrinkage stresses and to control thermoelastic properties.
- >Additional studies of leak rate reduction, adhesion, CTE, and and environmental stability are underway, but preliminary results are encouraging.