# Durability & Reliability of SOFC Materials and Components

Edgar Lara-Curzio and Miladin Radovic Metals & Ceramics Division Oak Ridge National Laboratory

Collaborators

J. Lannutti Ohio State University D. England (Dephi)

SECA CTP Review Meeting September 30-October 1, 2003



# Work sponsored by the US Department of Energy, Office of Fossil Energy, SECA Core Technology Program at ORNL under Contract DE-AC05-00OR22725 with UT-Battelle, LLC.

C. R. Luttrell, B. Armstrong and Claudia Walls Metals & Ceramics Division Oak Ridge National Laboratory



# Outline

- Background
- Reduction of NiO-YSZ precursor materials for anodes
  - Kinetics
  - Effect of reduction on mechanical properties of Ni-based anode materials
    - Elastic properties
    - Strength
    - Fracture Toughness
- Effect of cyclic conditions (thermal, oxidation-reduction) on mechanical properties of NiO-YSZ anode materials.
- Stresses during fuel cell assembly
- Summary
- Future work



# Background





Mechanical failure is determined by the spectrum of mechanical loads and the distribution of strengths for materials that exhibit stochastic strength



Stress (MPa)





## Background

The lower tail of the distribution of strengths dictates the reliability of materials that exhibits stochastic strength.



Stress (MPa)





# Outline

- Background
- Reduction of NiO-YSZ precursor materials for anodes
  - Kinetics
  - Effect of reduction on mechanical properties of Ni-based anode materials
    - Elastic properties
    - Strength
    - Fracture Toughness



#### **Kinetics of NiO-YSZ Reduction**



- NiO-YSZ samples were exposed to a gas mixture of 4%H<sub>2</sub>-95%Ar at 800°C for different periods of time up to 24 hrs.
- Porosity <u>increases</u> with increasing fraction of reduced NiO







- NiO-YSZ test specimens were prepared with different amounts of porosity
- On average test specimens had the same thickness.
- NiO-YSZ samples were exposed to a gas mixture of 4%H<sub>2</sub>-95%Ar at 800°C for 24 hrs.
- Porosity increases after reduction



Initial Porosity of NiO-YSZ, vol%





#### Determination of elastic properties





### Effect of reduction on Elastic properties of NiO-YSZ

- NiO-YSZ samples were exposed to a gas mixture of 4%H<sub>2</sub>-95%Ar at 800°C for different periods of time up to 24 hrs.
- Young's and shear moduli were obtained at 20°C after reduction using impulse excitation and resonant ultrasound spectroscopy.
- Elastic moduli <u>decreases</u> with fraction of reduced NiO.
- Changes are mostly due to increase in porosity as a result of reduction.



UT-BATTELLE



### Biaxial Strength Ring-on-Ring ASTM C1499



$$\sigma_{f} = \frac{3F}{2\pi h^{2}} \left[ (1-\nu) \frac{D_{s}^{2} - D_{l}^{2}}{2D^{2}} + (1+\nu) \ln \frac{D_{s}}{D_{l}} \right]$$

where *F* is breaking load, *h* sample thickness, *v* is Poisson's ratio and *D*,  $D_s$  and  $D_l$  are diameter of sample, supporting ring and loading ring, respectively



- NiO-YSZ samples were exposed to a gas mixture of 4%H<sub>2</sub>-95%Ar at 800°C for various periods of time up to 24 hrs.
- On average the samples had the same thickness and initial porosity (~20%).
- The biaxial strength of fullyreduced NiO-YSZ (Ni-YSZ) materials is lower than that of its precursor.







#### Biaxial Strength of NiO-YSZ and Ni-YSZ materials

- The porosity of NiO-YSZ samples increases after reduction in a gas mixture of 4%H<sub>2</sub>-95%Ar at 800°C for 24 hrs.
- On average the samples had the same thickness.
- The biaxial strength of NiO-YSZ decreases after reduction into Ni-YSZ.
- Biaxial strength of both materials <u>decreases</u> with increasing porosity.





#### Biaxial Strength of Ni-YSZ materials as a function of porosity

- NiO-YSZ precursors with different porosities were reduced in a gas mixture of 4%H<sub>2</sub>-95%Ar at 800°C for 24 hrs.
- All samples had on average the same thickness.
- The biaxial strength of Ni-YSZ materials <u>decreases</u> with increasing porosity.







#### Effect of sample thickness on Strength of NiO-YSZ and Ni-YSZ

- While the characteristic strength of NiO-YSZ is insensitive to the thickness of the test specimen, the characteristic strength of Ni-YSZ samples <u>decreases</u> with increasing thickness.
- Ni-YSZ was obtained after reducing NiO-YSZ in a gas mixture of 4%H<sub>2</sub>-95%Ar at 800°C for 24 hrs.
- On average the porosity of the initial NiO-YSZ samples was the same (~ 20%).







#### Biaxial Strength of NiO-YSZ materials



#### Fracture surface of unreduced NiO-YSZ sample. Initial porosity 6%



#### Biaxial Strength of NiO-YSZ materials



#### Fracture surface of unreduced NiO-YSZ sample. Initial porosity 6%

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY



#### **Biaxial Strength of Ni-YSZ materials**



Fracture surface Ni-YSZ sample after complete reduction. Initial porosity 6%



#### **Biaxial Strength of Ni-YSZ materials**



Fracture surface Ni-YSZ sample after complete reduction. Initial porosity 6%



### Fracture Toughness Double-torsion testing





$$K_{I} = PW_{m} \left[ \frac{3(1+\nu)}{Wt^{4}\xi} \right]^{1/2}, \xi = 1 - 1.26(t/W) + 2.4(t/W) \exp[-\pi W / (2t)]$$
Precracked @ 0.02 mm/min and tested @ 1 mm/min



- The porosity of NiO-YSZ samples increases after reduction in a gas mixture of 4%H<sub>2</sub>-95%Ar at 800°C for 24 hrs.
- All samples had on average the same thickness.
- The fracture toughness of NiO-YSZ and Ni-YSZ materials <u>decreases</u> with increasing porosity.
- Ni-YSZ materials are <u>tougher</u> than their NiO-YSZ precursors



UT-BATTELLE

#### Fracture Toughness of NiO-YSZ materials



#### Pre-cracked NiO-YSZ specimen

**OAK RIDGE NATIONAL LABORATORY** U. S. DEPARTMENT OF ENERGY



#### Fracture Toughness of Ni-YSZ materials



#### Pre-cracked Ni-YSZ specimen

#### **OAK RIDGE NATIONAL LABORATORY** U. S. DEPARTMENT OF ENERGY







# Outline

- Background
- Reduction of NiO-YSZ precursor materials for anodes
  - Kinetics
  - Effect of reduction on mechanical properties of Ni-based anode materials
    - Elastic properties
    - Strength
    - Fracture Toughness
- Effect of cyclic conditions (temperature, oxidation, reduction) on mechanical properties









### Cyclic Testing Experimental Stations

- Tubular furnaces
- Thermal cycling under constant environment.
- Thermal cyclic coupled with cyclic oxidation/reduction





OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY



- Thermal cycling of NiO-YSZ anode materials between 20°C and 800°C.
  - Constant heating rate: 30°C/min.
  - 2-hr dwell at 800°C
  - Cooling at natural cooling rate of system. Repeat cycle after 1.5 hrs.
  - Gas mixture of 4%H<sub>2</sub>-96%Ar
- Strength <u>decrease</u> with number of thermal cycles







SX-23525 15.0kV 14.7mm x18.0k SE(M) 9/29/2003 3.00um

#### OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY



### Effect of thermal cycling coupled with cyclic oxidation-reduction

- Thermal cycling of NiO-YSZ anode materials between 20°C and 800°C.
  - Heating in air at a constant rate of 30°C/min.
  - 2-hr dwell at 800°C in a gas mixture of 4%H<sub>2</sub>-96%Ar
  - Cooling at natural cooling rate of system. Repeat cycle after 1.5 hrs.
- Significant damage after 81 cycles.



# Outline

- Background
- Reduction of NiO-YSZ precursor materials for anodes
  - Kinetics
  - Effect of reduction on mechanical properties of Ni-based anode materials
    - Elastic properties
    - Strength
    - Fracture Toughness
- Effect of cyclic conditions (temperature, oxidation, reduction) on mechanical properties
- Stresses during fuel cell assembly





### **Reliability of structures**

- Delphi has synthesized bi-layers (NiO-YSZ/YSZ)
- OSU has determined the geometry of the bi-layers



#### OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY



### Curvature of NiO-YSZ/YSZ bi-layers





### **Reliability of structures**

- Delphi has synthesized bi-layers (NiO-YSZ/YSZ)
- OSU has determined the geometry of the bi-layers
- ORNL will estimate stresses associated with "sandwiching" and bonding bi-layers between two rigid metallic plates.





#### **Reliability of structures**





 clamp and bond bi-layer using perforated rigid metallic plates.

#### **OAK RIDGE NATIONAL LABORATORY** U. S. DEPARTMENT OF ENERGY



 Displacements associated with clamping bi-layer between two rigid plates



#### **OAK RIDGE NATIONAL LABORATORY** U. S. DEPARTMENT OF ENERGY



### **Reliability of structures**

- Delphi has synthesized bi-layers (NiO-YSZ/YSZ)
- OSU has determined the geometry of the bi-layers
- ORNL will estimate stresses associated with "sandwiching" and bonding bi-layers between two rigid metallic plates.
- ORNL will heat the assembly up to 800°C followed by reduction in 4%H2-96%Ar. ORNL will predict the failure rate and compare predictions with experimental values.





### **Reliability of structures**



- heat-up assembly in air up to 800°C.
- change atmosphere to 4%H<sub>2</sub>-96%Ar
- Detect cracking using AE sensors
- select thickness and material of rigid metallic plate based on strength predictions at 800°C.
- Compare predicted and <u>actual</u> failure rates.



### Summary

- The kinetics of NiO-YSZ were investigated at 800°C using a gas mixture of 4%H2-96%Ar.
  - Paralinear kinetics
  - The porosity of reduced samples increases after reduction
  - Elastic properties decrease after reduction
  - Biaxial strength decreases after reduction
  - Fracture toughness increases after reduction
- Experimental facilities are now operational to investigate the effect of thermal cycling and cyclic oxidation-reduction on the physical and mechanical properties of SOFC materials.
  - The strength of Ni-YSZ decreases significantly after thermal cycling between 20°C and 800°C in 4%H2-96%Ar.
  - Significant destructive damage (cracking, warping) resulting from thermal cycling coupled with cyclic reduction-oxidation.
- Work has been initiated to validate reliability predictions in model (NiO-YSZ/YSZ bi-layer) system



- Evaluate model bi-layer system and compare predicted and actual failure rates.
- Continue evaluating effect of thermal cycling and cyclic oxidation-reduction on properties, durability and reliability of SOFC materials.
- Continue interacting with industrial teams to address specific problems.
- Integrate results with modeling task.

