Chromium Poisoning and Diesel Reforming

Mike Krumpelt, Di-Jia Liu, Tom Kaun, Terry Cruse, and Cécile Rossignol

SECA Core Technology Review Albany, NY September 30 – October 1, 2003

Argonne National Laboratory

A U.S. Department of Energy Office of Science Laboratory Operated by The University of Chicago

- In cells with metallic bipolar plates, chromium accumulates in anodes and cathodes
- In some cases, the problem appears to become worse at lower temperature

Thermodynamics:

- Chromia protective scale can have a solid state reaction with LaMnO₃ and LaFeO₃

HSC plot with chromia, LaMnO_3 and LaCrO_3

HSC plot with chromia, $LaFeO_3$ and $LaCrO_3$

Approach to Determining Reactivity of Chromia Scale and Cathode

- Coupon samples of metal interconnect are coated with cathode material and held at 700-800°C in air with 25% water for 400h
- Measure Cr migration: Cr loss at metal surface and Cr collection in cathode layer examined by SEM/EDS

Cr Content of Cathode Layers on E-Brite Coupons at 800°C and 700°C (using SEM/EDS) after 400 hours in 25% Humid Air

E-Brite chromia scale at 800C is 0.5 micron vs. 1 micron at 700C

E-Brite chromia scale at 800C is 10 Micron vs. 1 micron at 700C

Cr content of cathode layers on 430 SS Coupons at 800°C and 700°C (using SEM/EDS)

430 SS has a 1 micron chromia scale at 800°C and Cr depletion at 700°C, 10 micron Fe layer 430 SS has a incomplete chromia scale at 800°C and Cr depletion at 700°C, 6-8 micron Fe layer

Issue:

 Chromia reacts with O₂ and H₂O to form volatile Cr(OH)₂O₂ (g), Cr(OH)₂O (g), or Cr(OH)O₂ (g)

From: Hilpert, K., D. Das, M. Miller D.H. Peck and R. Wei,

J. Electrochem. Soc., vol. 143, no. 11, pp. 3642-3647 (1996).

Approach to Volatility Issue

- Measure SOFC performance degradation (current at 0.7 volts), polarization and impedance spectroscopy.
- Post operative examination for Cr migration using SEM/EDS

Metal interconnect plate and shavings onto cathode

Cross-section of SOFC Test Cell (6 cm²)

SOFC #17 at 700 ^o C exhibits ongoing performance decline, LSM with 430 SS and 2% Humidity

SOFC Performance at 800°C (#16) and 700°C (#17) with LSM cathode and 430 SS

SEM of LSM Cathode Cross-section from SOFC (#16) with 430 SS at 800C

Cr Content by EDS at Sites 1-5: 0.4 wt% Cr 0 wt% Cr

Sites 1-5 are cathode thickness under 430 SS particle

SEM of LSM Cathode and 430 SS Interconnect from SOFC (#17) at 700°C

Cr Content at Sites by EDS

Sites 1-2: Cr depletion of 430 SS: 7.8 and 8.2 wt% Cr from 17 wt % Cr

Sites 3-5 Cr level with cathode: 0, 1.50, 015 wt% Cr

Key Technical Challenges Facing Current Diesel Reforming Catalyst Development

- Costly Rh usage

Durability

- Metal vaporization
- Metal agglomeration
- Support stability
- Sulfur poisoning
- Coke formation

Catalyst activity and cost were rated as the top program need by SECA Vertical Team

13

Approach to Diesel Reforming Catalyst

The Perovskite Catalyst...

- Consists of low cost material
- Stable under high temperature
- Stable in strong redox environment
- Has adjustable cationic vacancy
- Has exchangeable A & B site for activity improvement
- Has mild catalytic oxidation activity
- Contains transition metals active in SR such as Ni, Co, Mn, Cr, etc.

Argonne Catalytic ATR Reactor & Test Conditions

Catalyst Test Conditions

- Reforming Input Mixture
 - ATR: O/C = 0.6 ~1, H2O/C = 1 ~ 3
 - SR: H2O/C = 3 ~ 6
- Temperature & Space Velocity
 - Reactor Temperature = 725 °C
 - Fuel Flow Rate = 2.8x10⁻³ gfuel/gCat•sec,
 - GHSV = 50 K ~ 100 K hr⁻¹,

Catalyst Characterization

- Microreactor study
 - Lightoff Temperature, TPR, TPD
- Material characterization
 - ICP, XRD, BET etc.

Diesel Reforming Catalyst Development at Argonne – Reforming Efficiency of Selected Samples

- Over 20 catalyst formulation with different combination of metals in A & B.
- The catalyst activity depends highly on formulation and preparation conditions.

Diesel Reforming Catalyst Development at Argonne – Improving Catalyst Formulation

The new ANL catalyst outperforms the benchmark Rh/CGO catalyst

17

Diesel Reforming Catalyst Development at Argonne – Improving Activity through Site Doping & Vacancy

Cationic exchange at A & B sites can create lattice vacancy in perovskite structure and a better reforming catalyst

Diesel Reforming Catalyst Development at Argonne – Improving Methods of Catalyst Preparation

Reduced calcination temperature improved H2 lightoff threshold...

... and enhanced hydrogen yield.

Optimizing calcination temperature resulted in significant activity improvement

Diesel Reforming Catalyst Development at Argonne – Performance & Cost Improvement Summary

Our diesel ATR catalyst development effort produced new formulations with enhanced performance at lower cost

20

Future Plans

- Continue to optimize formulation and synthesis method of perovskite based catalyst with improved reforming activity.
- Start to incorporate organic sulfur compounds in surrogate fuel for sulfur tolerance test.
- Explore perovskite catalyst reforming activity with low/no steam usage.
- Start reforming activity test with simulated recycled SOFC emission.
- Long term catalytic aging test.

