

Metal Interconnects for Solid Oxide Fuel Cell Power Systems

SECA Core Technology Program Ceramatec, Inc.

Supported in part by **DOE-NETL**

Presented at Albany, NY 01 October 2003

Technical Issues Addressed

• Technical Requirements for Metal Interconnects

- > CTE match
- ▹ No gas permeation
- > High temperature corrosion resistance
- Scale conductivity
- Scale adhesion
- Stability in atmosphere (physical, chemical, microstructure, conductivity)
- Stability against electrode/bond layer (poisoning effect)
- Electrical contact with cells
- > Thermal cycle capability

Risks and Challenges

- Alloys with exceptional corrosion resistance form nonconductive scales (e.g., alumina formers)
- Chromia formers provide a conductive scale
 - Continued scale growth during operation
 - Increased electrical resistance
 - Loss of adhesion
 - Porosity at interface
 - > Chromium vaporization
 - Electrode Poisoning
 - > Electrode compatibility
 - High resistance phase formation with electrode cations (spinel)

R&D Objectives

- Controlled growth of conductive scale to achieve
 - > Electronic conductivity
 - Low cation (metal) and anion (oxygen) diffusivity
 - Good adhesion ('native' scale)
- Application of conductive layers
 - > Application techniques
 - Screen printing
 - Thermal spraying

Fe-Cr based ferritic SS

Approach

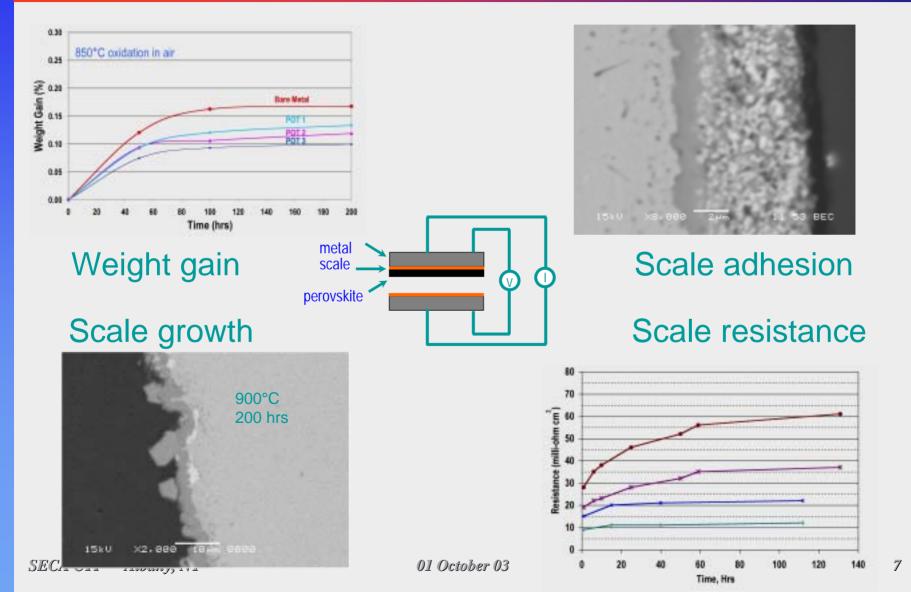
Alloy Selection

- CTE Match
- > Conductive scale (chromia former)
- > Choice of minor alloying elements

Pre-treatment

- Growth of selective oxide scale
 - Control P, T, X_i and t
- Scale characterization

elements



Assessment Criteria

- Weight gain with time at temperature
- Scale thickness
- Electrical resistance
- Thermal cycles
- Exposure to relevant atmospheres

Summary of Results - 20Feb03

SECA Team Recommendation

• Feedback

- Relevancy of temperature
- > Effect of atmosphere on air-side scale
 - moisture in air
 - dual atmosphere

Revised Plan

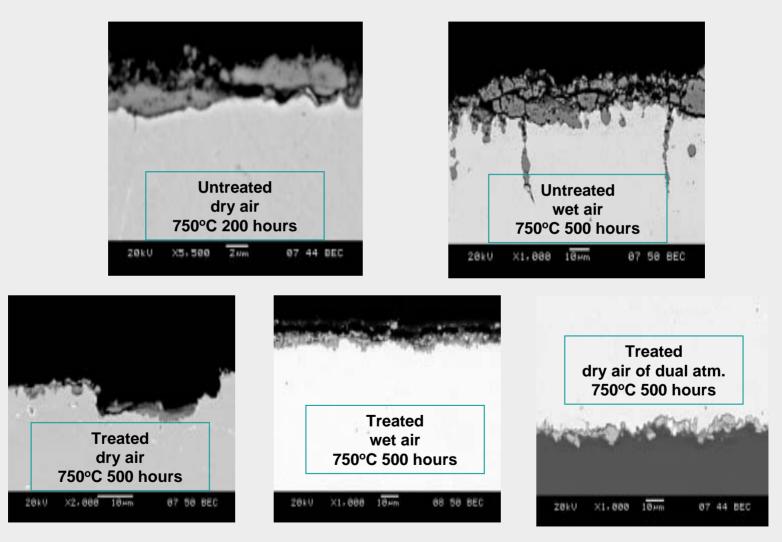
- ➤ Test temperature 750°C
- > Characterization at various exposure conditions

Revised Experimental Plan

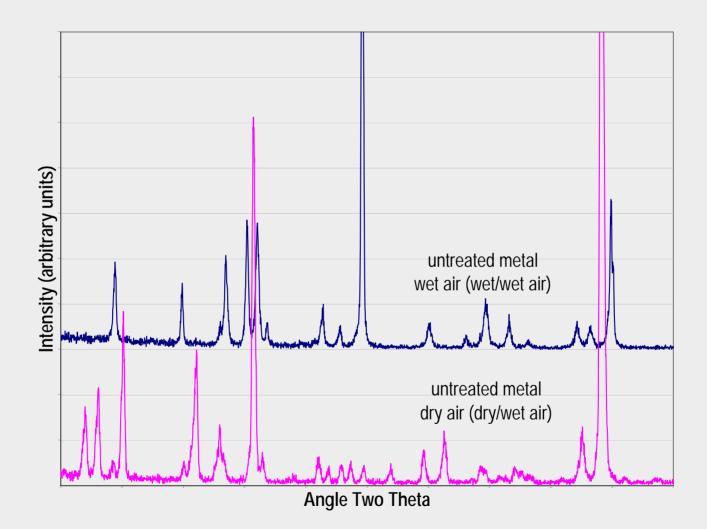
Exposure conditions (750°C 500 hours)

- Dry air / dry air
- Dry air / wet hydrogen
- > Wet air / wet hydrogen
- > Wet air / wet air
- > Wet hydrogen / wet hydrogen

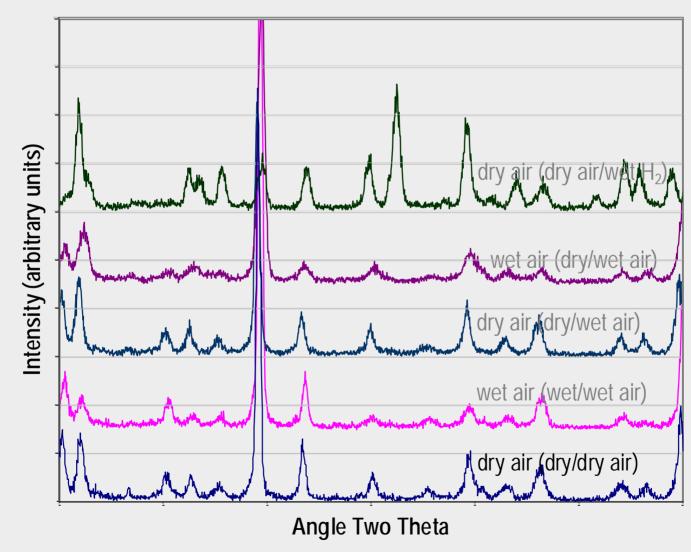
Characterization


- Static weight gain
- Scale Morphology & Composition
- Conductivity / thermal cycle tests

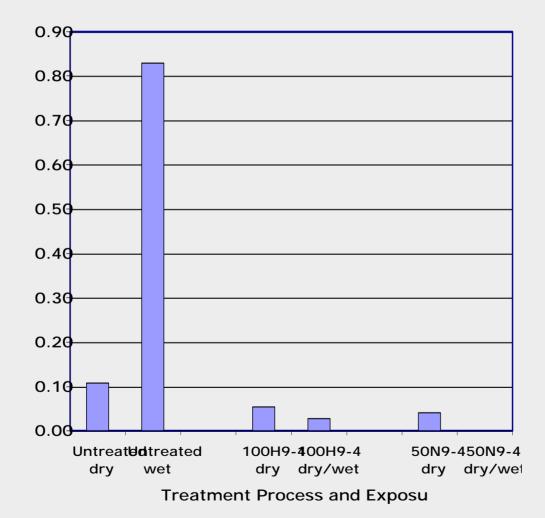
Test arrangement to monitor fuel pO₂ during dual atm. exposure


Scale Morphology

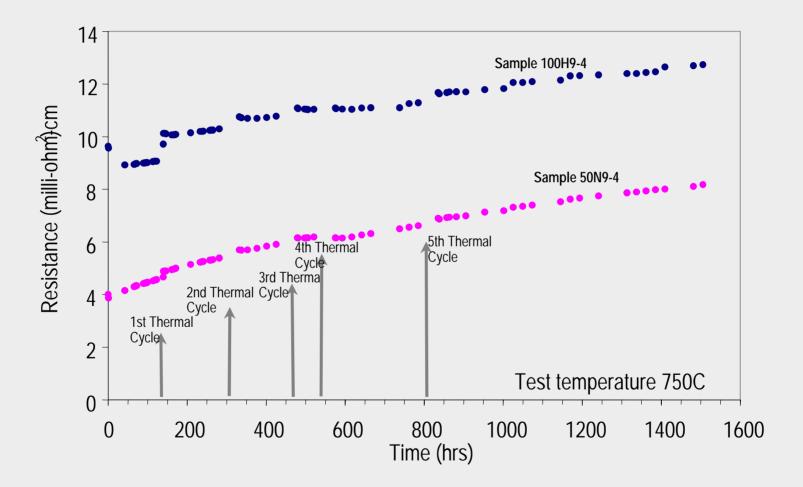
01 October 03



Untreated Metal - 500 hrs at 750°C


Treated Metal - 500 hrs at 750°C

01 October 03


Static Weight Gain

01 October 03

Scale Resistance

Phase I Summary

- Commercial stainless steel characterized for applicability
- Demonstrated an appropriate treatment to achieve
 - Low resistance interface
 - stable morphology
 - > Proper scale composition
 - > Thermal cycle capability (up to five) demonstrated
- Selected optimization parameters for additional improvements in properties

Applicability to Industrial Teams

- Present approaches by the SECA industrial teams
 - Electrolyte supported co-fired planar
 - Anode supported planar
 - Cathode supported re-designed tubular
 - Anode supported thin cylinder
- Technical applicability
 - > Metal interconnects
 - > High temperature current collectors, bus bars
- Commercial applicability
 - Low cost materials and processes
 - Process flexibility to suit materials chemistry of mating surfaces

Activities for the next 12 Months

- Additional improvements to pre-treatment process
- Determine scale growth kinetics
- Process development for conductive coating
- Scale coating interaction study
- Effect of SOFC relevant atmospheres

Optimization Pre-treatment Process

• Objective

Selection of optimal pre-treatment process conditions

Approach

- Iterative modification of process conditions based on initial and after 500 hour exposure at 750°C (dry & wet air, wet hydrogen)
 - Scale composition full scale development after pretreatment
 - Microstructure evolution
 - Interface electrical resistance

Scale Growth Kinetics

• Objective

- Measure the rate of scale growth by thermogravimetry in air and humidified hydrogen atmospheres
- Approach
 - > TGA of baseline and treated samples in relevant atmosphere to establish kinetic parameters

Process for Conductive Coating

• Objective

 Determine the optimal powder characteristics and process parameters to obtain thin dense coating - Process selection applicable to a variety of powder compositions

• Approach

- Iterative evaluation of particle morphology, size distribution and specific surface area and deposition conditions.
- > SEM, EDS, conductivity

Scale-Conductive Coating Interaction

• Objective

Determine the chemical interaction between the conductive coating and the scale, and the effect on scale growth and morphology

• Approach

- Scale composition and morphology after 500 hour exposure
- > TGA for scale growth

Evaluation in SOFC Relevant Atm.

• Objective

- Determine the scale properties at various SOFC relevant atmosphere
 - Scale chemistry, morphology, and adhesion

• Approach

- > Study the effects of
 - Wet air
 - Dual atmosphere
 - Hydrocarbon fuel (simulated reformed methane)
 - S-bearing fuel (up to 5 ppm H_2S)

Key Tasks for Year 1

Tasks	Q1	Q2	Q3	Q4
 Optimization of Pre-tre atment Determination of Scal e Growth Kinetics Process Optimization for Conductive Coating 				
 4. Evaluation scale and conductive coating interaction 5. Evaluation in SOFC Relevant Atmospheres 				

Acknowledgement

- Ceramatec team
- DOE-SECA project managers
- CTP teams
- SECA industrial teams