NYSERDA Fuel Cell Product Development

Richard Drake Program Manager, Power Systems R&D New York State Energy R&D Authority Albany, NY

CHP Demo vs. Development

• CHP – Demo

- End user contractors
- Commercial products
- Long term Demos.
- Goals:
 - Megawatts
 - Best practice
 - Mitigate early adaptor risk
 - Establish economic benefits

- Product Development
 - Contractors are manufacturers
 - Pre-commercial technology
 - Field test/Demos.
 - Goals:
 - Technology advancement
 - Commercial product development

Power Systems Program Objectives

- Technology Advancement
 - Improve energy & environmental performance of power systems
- Product Development
 - Create economic benefits for the state: jobs, reduced energy costs, etc.
- Overcome non-technical barriers to adoption
 Document performance/benefits for policy decisions

Power Systems Program \$4 MM SBC + \$1 MM Statutory

Solicitation	Response	Projects
	(Proposals)	(Awards)
PON 536 (May 2001)	33	17
PON 669 (March 2002)	34	11
PON 750 (April 2003)	49	16

Power Systems Program Portfolio

Project Category	Number of Projects
Fuel Cell Technology	14
Turbine/Other Generation Tech.	15
Reliability	6
Environmental Performance	4
Barriers and Policy	4

NYSERDA Fuel Cell History

- \$3M investment in fuel cell development from 1992-97
- +\$7.5M investment since 1998
- Over 90 field test/demos
- Currently Supporting six New York State companies PEM & SOFC technologies

Fuel Cell Project Types

- PEM technology (8 projects, \$5.2M)
 - Integrated Product Development
 - High temp. stack / CHP products
 - Telecom product
 - Subsystems

VSFRNA

- Fuel processor (propane); Inverters / Power Conditioning
- Field tests
- SOFC (4 projects, \$1.2M)
 - Materials
 - Components/Subsystems
- Direct methanol (2 projects, \$700k)
 - systems

PEM Fuel Cell Field Test/Demonstration

- 3 Phase project to build, test, evaluate and demonstrate Plug Power 7 kW fuel cells
- \$6M project (\$3M funding provided by through New York State Clean Air Clean Water Bond Act of 1997 matched by equal funding by Plug Power)
- Deploy units at publicly-owned and accessible facilities across the state
- Verify the clean, environmentally friendly nature of PEM fuel cells and garner public support for their early introduction
- Accelerate wide scale commercialization

80 Unit PEM Fuel Cell Demonstration

- Phase 1 Laboratory evaluation of 24 preproduction prototypes 5/99-3/00
 - Build an experience database for failure mode effects analysis under simulated field conditions
 - Establish operating strategies for selected applications
 - Understand & integrate sub-system modules

80 Unit PEM Fuel Cell Demonstration

- Phase 2 Initial field evaluation of 6 pre-production prototype units (3/00-7/00)
 - incorporate knowledge gained from phase I, to improve performance and/or reduce cost
 - identify initial field installation/operation issues
 - Maintenance schedules developed
 - Validation of field service procedures

80 Unit PEM Fuel Cell Demonstration

- Phase 3 Demonstration of 50 Test & Evaluation Units (8/00-12/01)
 - Incorporate information gained and design changes from Phases 1 & 2
 - First factory assembled systems
 - First self-enclosed units
 - Intended to achieve essentially unattended operation
 - Measure performance and emissions

What Did We Learn? – Phase I

Product Development

•Average Operating Time: 453 hrs

•Integration of Fuel Processor, Power Module, and Inverter Proved a Significant Challenge

•Full Integration Required Redesign of Some Module Components

•Control Scheme Required Computer Control

Operations

- •Commissioned and Validated Manufacturing Facility
- Trained Workforce
- •Developed Failure Reporting and Corrective Action System (FRACAS)
- Initiated Engineering Change Discipline

What Did We Learn? – Phase II

Product Development

- •Average Operating Time: 844 hrs between 2 and 7 kWe
- •Successful Sub-system Integration
- •Detailed Understanding of what it takes to Operate in the Field
- •Clearly Defined the Delta Between Where We Were and Where Our Final Target Product Specifications Needed to Be

Operations

- •Shipping and Deployment Processes and Procedures
- •Grid Interconnection with Utilities is a Very Significant Design Consideration
- •Began Review and Realignment of Component Manufacturers and Supply Base
- •Developed Formal Process for Receiving Product from Manufacturing and Commissioning Systems in the Field

NYSERDA SPECIFICATIONS

Parameter	Value
Power:	1-7 kW _e nominal range
AC Voltage:	120 VAC / 240 VAC, 60 Hz
Grid Interface:	Manual operation
Operating Temp:	4 to 40 °C
Fuel Source:	Natural Gas (4 to 12"
Altitude:	Up to 26000 ft
Power Quality Steady:	ANSI C84 (+-5%)
Power Quality Trans.:	CBEMA curve
Harmonics:	IEEE 519, Sec 11, Table 11
Steady State Emissions:	< 400 ppm CO

What Did We Learn? – Phase III

Product Development

•Average Operating Time: 927 hrs between 2 and 4 kWe at an Average Eff. of ~ 20% Exposed to the Elements

•First Factory Assembled Systems Integrating Fuel Processor, Power Module and Inverter on Single Skid; "Design Lock"

•UL Listed, CSA Certified, Easily Grid Interconnectable

Operations

- •Over 90% Reduction in Manufacturing Defects
- •Reduction in Factory Certification Test Cycle Time from 3 Weeks to 25 Hours

•Developed "Requisition to Decommission" Processes: Master Build Schedule, Lean Manufacturing, Design Documentation and Control, Quality, Test & Verification, Shipping and Receiving, Field Service, Customer Support and Hotline

•Recognized Data Collection as a Significant Organizational Challenge

What Did We Learn? – Phase III Cont.

Overview of Phase III Data Collection

Case Study – Watervliet Arsenal 2002

Installation and Commissioning

•One Day Per Site from Flatbed to Exporting Power to the Grid

Operation (as of April 31, 2002)

- •Average System Run Time = 2,400 hrs.
- •Average Availability = 96.7%
- •Capacity Factor = 100%
- •Average Efficiency = 26.1%
- •Over 60 MW-hrs of electricity produced

Manufacturing Capabilities

•Ability to Fill Customer Orders from Purchase to Exporting Power in Less than 12 Weeks

Organization

NYGERNA

- •New Product Development Process
- Technology Development Process
- •Research and Development and System Architecture
- Supply Chain/Extended Organization

SOFC

Low-Cost Yttria-Stabilized Zirconia Powders

• Refractron Technologies, Inc., Newark, NY

•Powders to be used by MA/COM to manufacture SOFC components for McDermott Technologies/Cummins Power Corp. DOE SECA Program

•Powders currently being evaluated by ENrG, Inc. in Alden, NY

SOFC Planar Strip-Cell

- ENrG Inc., Alden, NY, working with NYS OEM/Stack Manufacturer
- Demonstrate mass-fabrication of planar strip-cell SOFCs using thin, flexible, highperformance ceramic electrolyte.

SOFC Low-Cost Ceramic Recuperator

- Blasch Precision Ceramics, Inc. Albany, NY
- Developing recuperator for Acumentrics Corp, Westwood, MA, tubular SOFC to improve efficiency

Power Systems Program Accomplishments

Accomplishment	Quantity
New Products Launched	6
Jobs Created	425
Peak Load Reduction (2003)	>30MWe
Leveraged Development in NY	+\$25MM

www.nyserda.org

George E. Patal Governor

Vincent A. Delorio, Esq. Chairman

Peter R. Smith Acting President

In Remembrance Governor map-NY e-bizNYS Citizen Guide ENERGY RESEARCH AND DEVELOPMENT AUTHORITY

Hot Topics

The Empire State

- Sign-Up for E-mail News Updates!
- State Energy Plan
- Saratoga Technology & Energy Park
- Energy \$martSM Loan Fund
- Weekly State Energy Prices

✓ Funding Opportunities
 ✓ Forms & Applications
 ✓ Programs
 ✓ New York Energy \$marts
 ✓ About NYSERDA
 ✓ What's New
 ✓ Energy Information & Analysis
 ✓ Events
 ✓ Contact Us/Directions
 ✓ Press Releases
 ✓ Publications
 ✓ Jobs at NYSERDA
 ✓ Search