

LSGM Based Composite Cathodes for Anode Supported, Intermediate Temperature (600-800 °C) Solid Oxide Fuel Cells

Tad J. Armstrong, Yimei Gao, and Micha Smith

Materials and Systems Research, Inc. Salt Lake City, UT

Objectives

- Develop LSGM-based composite cathodes for intermediate temperature solid oxide fuel cells
- Fabricate composite cathodes and cells LSGM with an electrocatalyst Anode supported SOFC with YSZ electrolyte
- Gd-doned CeO. harrier layer Optimize cathode composition
- Determine suitable A and B site doping for perovskites Vary relative amounts of LSGM and electrocatalysts

 Optimize cathode microstructure for optimal performance Composition
 - Firing Temperatures and Times
 Particle Size and Powder Processing Porosity
- Cathode Interlayer Thickness
- Cathode Stability
 Study diffusion between LSGM and electrocatalysts

Single Cell Testing

Performance of Cells with Cathode Interlayers

Comprised of LSGM and LSM, LSC, and LSCF

•Tested at 800 °C •Cathode Interlayers: 50 wt.% LSGM + 50 wt.% Electrocatalyst

Ohmic Resistance and Electrode Overpotential of Cell with LSGM/LSC Composite Cathode

Stack Testing

LSGM Based Cathodes

- LSGM
 - Sr and Mg doped LaGaO,
- Solid electrolyte (ionic conductor)
 High oxide ion conductivity ~0.1 S/cm at 800°C
- Electrocatalysts LSC: Sr doned LaCoO.
- Mixed ionic and electronic conductor (MIEC) Electronic conductivity ~800-1000 S/cm at 800°C Other Perovskites:
- LSF, Sr doped LaFeO₃
 LSCF, Sr and Co doped LaFeO₃
- LSM, Sr doped LaMnO₂ Composite Cathodes
- Performance depends on:
- Three phase boundary length
 Oxide ion conductivity of ionic conductor (LSGM)
- Electronic conductivity of electrocatalyst (LSC)
 Oxygen adsorption on electrocatalyst
- Degree of sintering and phase contiguity
- Quality of bond between the cathode and the cell electrolyte

Effect of Cathode Firing Temperature

- Cathode interlayer composition of 50 wt % LSGM + 50 wt % LSC

Effect of LSGM Particle Size on

25 Cell Stack

Anode supported cells with LSGM based composite cathodes will be fabricated and tested in similar stacks.

SEM Micrographs of Cells

Effect of Cathode Composition

Performance of LSGM/LSC Cathode Interlayers at Various Temperatures

Current and Future Work

- Ontimization of powder processing and particle size
- Fabrication of submicron and nanosized powders
- Development of low temperature cathode sintering
- Optimization of cathode interlayer microstructure
- Optimization of cathode interlayer composition
- Electrochemical testing of cathodes
- Long term phase stability studies Fabrication of larger cell with LSGM based cathodes
- Stack testing of cells with LSGM based cathodes

Acknowledgements

Research Funded by U.S. Department of Energy, NETL Under SBIR Contract No. DE-FG03-02ER83489