

Innovation for Our Energy Future

Biological Organisms and Renewable H₂ Production

Maria L. Ghirardi Chemical and Biosciences Center NREL, Golden CO 80401

NREL is operated by Midwest Research Institute - Battelle

U.S. Energy Consumption by source - 1850-2000

1950-2000, Annual Energy Review 2000, Table 1.3.

NREL National Renewable Energy Laboratory

U.S. Energy Flows

Dependence on Foreign Oil U.S. Use of Petroleum

REL National Renewable Energy Laboratory

Actual: Annual Energy Review 2000 Tbls 1.2, 5.1 and 5.12 Forecast: Annual Energy Outlook 2002 Tbls 7 and 11 Split between Autos and Lt Truck: Transportation Energy Data Book Edition 21 Tbl 2.6 Updated October 2002

Energy Challenges are Enormous

Energy Security and Reliability

Economic Growth

Environmental Impact

The Role of Renewables in the U.S. Energy Consumption- 2003

Source: AEO 2004 tables (released in December 2003) based on US energy consumption. Overall breakdown Table A1 (Total Energy Supply and Disposition), and Renewable breakdown Table A18 (Renewable Energy, Consumption by Section and Source).

Technology-based Solutions:

There is no single nor simple answer

- Energy efficiency
- Renewable energy
- Non-polluting transportation fuels
- Separation and capture of CO₂ from fossil fuels
- Next generation of nuclear fission and fusion technology
- Transition to smart, resilient, distributed energy systems coupled with pollution-free energy carriers, e.g. hydrogen and electricity

NREL & Renewable Hydrogen Production

- Photoelectrochemical hydrogen production from water
- Photobiological hydrogen production by algae and cyanobacteria
- Fermentation
- Hydrogen production from biomass
- Solar thermochemical hydrogen production
- Co-production of electricity and hydrogen from renewable technologies, e.g., wind electrolysis

Biological Modes of H₂ Production (I)

Dark fermentative bacteria

- No energy input required
- Maximum theoretical yield: 4H₂/sugar with known organisms and technology
- Current yield 1-2 H₂/sugar
- Price of feedstock is too high (unless one uses wastewater remediation)
- Product inhibition

H₂ via Cellulose Fermentation

Strains	Rate of H ₂ Production
ATCC	1018
1.1.1	595
YS	477
7.10.4	447
7.12.1	407
7.7.10	35
7.8.3	Traces
6.3.2	Traces
7.9.4	Traces

- Best H₂ producers from cellulose ٠ (Avicel) were identified
- Using cellulose in lieu of glucose • will address the feedstock cost barrier

Biological Modes of H₂ Production (II)

Anoxygenic (no O₂ by-product) photosynthetic bacteria

 $H_{2} + CO_{2} \longleftarrow$ $light \longrightarrow N_{2}ases$ organic acids \longrightarrow (acetate, butyrate)

- Sunlight energy input required
- Maximum theoretical light conversion efficiency of <6% (low), since nitrogenases are energy-requiring enzymes
- High production rates
- Feedstock can be products of fermentation (possibility for integrated systems)

Integrated Fermentative/Photobiological system

Biological Modes of H₂ Production (|||)

Specialized oxygenic (O₂ by-product) photosynthetic cyanobacteria

- Sunlight energy input required
- Maximum theoretical light conversion efficiency of <4% (nitrogenase is an energy-requiring enzyme)
- Feedstock is water
- No O_2 inhibition due to temporal or ulletspatial separation between O_2 and H_2 evolution reactions

Biological Modes of H₂ Production (IV)

Oxygenic (O₂ by-product) photosynthetic green algae and specialized cyanobacteria

- Sunlight energy input is required
- Maximum theoretical light conversion efficiency is 10-13%
- Feedstock is water
- O₂ inhibits H₂ production

Vision

Potential of Photobiological H₂ Production

- Light absorbed by the organism's pigments: 45% of incident solar energy;
- Conversion of light into reductants and oxidants: 32% of incident solar energy;
- Light utilization for H₂ and O₂ production: 13% of incident solar energy

Potential of Photobiological H₂ Production from Water

 Amount of land area required to supply H₂ for the U.S. transportation needs (236 million cars): 0.12% of total land area, in the U.S. Southwest, or 100 km x 100 kilometers or about 4500 square miles.

Algal Machinery for H₂ Photoproduction

Mechanism of Photobiological H₂ Production

Technical Challenges and Approaches for Photobiological H₂ Production from Water (Algae and Cyanobacteria)

- The hydrogenases are sensitive to O_2 and are neither synthesized nor active in the presence of even small amounts of O_2 (NREL).
- Competition between the hydrogenase and the CO₂ fixation pathway favors the latter.
- Electron transport from H₂O to the hydrogenase enzyme is limited by the non consumption of ATP.
- Solar conversion efficiency is severely hindered by the presence of large arrays of chlorophyll in the algae (UCB).

O₂-tolerance of Hydrogenases (NREL)

First Approach: Engineer an algal [FeFe]-hydrogenase that is resistant to O_2 inactivation;

Advantages: potential 10% light conversion efficiency Disadvantage: produces mixture of H_2 and O_2

Second approach: Use the UCB/NREL sulfur-switch to induce culture anaerobiosis and subsequent H_2 -production activity in algae.

Advantages: produces pure H₂ Disadvantages: maximum light conversion efficiency << 10%

• The catalytic center is located in the middle of the enzyme structure; electrons are delivered to it directly by the electron donor ferredoxin (Paul King).

"H₂ channel"

Algal (Chlamydomonas reinhardtii) HydA2 hydrogenase (based on homology modeling

We proposed that O_2 inactivation could be prevented by limiting O_2 access to the catalytic site of the enzyme.

[FeFe]-hydrogenases from different organisms were co-expressed in *E. coli*. The O₂-tolerance of the *Clostridium* enzymes is at least two orders of magnitude higher than that of the algal enzymes. All the computational modeling and mutagenesis work can now be done with the *C. pasteurianum*, whose X-ray structure is known.

Organism	Protein Name	Subunit Composition	Activity (nMol H ₂ / ml/min)	Specific Activity (nMol H ₂ / mg/min)	Half-life after exposure to air	
Chlamydomonas reinhardtii	HydA1	Monomeric	42	212	< 1 sec	
Chlamydomonas reinhardtii	HydA2	Monomeric	12	708	< 1 sec	
Clostridium	CaI	Monomeric	28	2894	415±115	200X
acetobutylicum	CaII	Monomeric	3	682		increase in O.
Clostridium pasteurianum	СрІ	Monomeric	20	ND	120-300	tolerance
Shewanella oneidensis	HydAB	Dimeric	14	850		

 The H₂ gas produced at the catalytic site diffuses out through multiple pathways; O₂ gas, which inhibits enzyme activity, diffuses in through 2 very well-defined pathways (Paul King, Kwiseon Kim, Jordi Cohen and Klaus Schulten).

Introduction of large amino acid residues in the cavity next to the catalytic site (red) resulted in non-assembly of an active enzyme. Mutations done along pathway A (green) resulted in small (< 20%) increase in O_2 tolerance. Other mutations yield inactive or unassembled hydrogenase. Future approach: introduce residues that compact the enzyme structure.

Pathway B

O₂-tolerance of Hydrogenases (NREL)

First Approach: Engineer an algal [FeFe]-hydrogenase that is resistant to O_2 inactivation;

Advantages: potential 10% light conversion efficiency Disadvantage: produces mixture of H_2 and O_2

Second approach: Use the UCB/NREL sulfur-switch to induce culture anaerobiosis and subsequent H_2 -production activity in algae.

Advantages: produces pure H₂ Disadvantages: maximum light conversion efficiency << 10%

Sulfur deprivation decreases photosynthetic O_2 evolution, shuts off the CO_2 fixation into sugar and induces hydrogenase activity in *Chlamydomonas* (NREL and UCB, 2000).

Batch system: Sulfur-deprived cultures gradually inactivate photosynthesis and become anaerobic (1-2 days). They then photoproduce H_2 for a total of 3-4 days. Cycles of +S and –S can be repeated for at least 3 times.

 V_{av} = 30-60 ml L⁻¹ d⁻¹

Continuous system: cultivation under limiting S concentrations in the first photobioreactor serves as a reservoir for algal cells that become competent in H_2 production when transferred to a 2^{nd} photobioreactor where H_2 production is occurring.

Batch system with immobilized cultures: *Chlamydomonas* cells immobilized on fiberglass can photoproduce H_2 at higher rates per cell volume than suspension cultures. H_2 production lasts 7 X longer than with suspension cultures.

 V_{av} = 917 ml L_{matrix}^{-1} d⁻¹; cyclic not investigated yet.

Continuous system with immobilized cultures: *Chlamydomonas* cells were continuously cultivated in the presence of limiting sulfate. The cultures photoproduced H_2 for a total uninterrupted period of 90 days.

Summary

Cultivation Mode	V _{av} (ml L ⁻¹ d ⁻¹)	Estimated cost under current laboratory conditions
Batch (one cycle) (1) suspension	60	N/A
(2) immobilized	917	N/A
Continuous	4.5	ФОБО И
(1) suspension (2) immobilized	15 283	\$250/kg N/A
Cycles	200	
(1) suspension	21	\$720/kg
(2) immobilized	N/A	N/A

Estimated cost of optimized system: \$2/kg.

Integrated Biological System

* The integrated system seeks to maximize both light and feedstock utilization

Team and Collaborators

NREL: Chris Chang, Kwiseon Kim, Paul King, Pin Ching Maness, Mike Seibert, Sharon Smolinski, Drazenka Svedruzic, Jianping Yu

Collaborators: Matt Posewitz (Colorado School of Mines,); Sergey Kosouvov and Anatoly Tsygankov (Pushchino, Russia); Klaus Schulten (Beckman Institute, University of Illinois); Michael Flickinger (University of Minnesota); Vekalet Tek (Florida International University)

