Biopharmaceutics Classification System (BCS): A Regulatory Risk Management Tool

Ajaz S. Hussain, Ph.D.

Deputy Director

Office of Pharmaceutical Science

CDER, FDA

Bristol-Myers Squibb Company, Hopewell, NJ. February 7, 2002.

Bioequivalence Hearing of 1986

- "..seems sensible to think that swallowing something that turns into a solution rapidly would be difficult to lead to differences from one product to the next....."
 - Bob Temple in response to Arnold Becketts presentation
- ".....I've learned that there is no support here for attempting to provide such assurance solely with *in vitro* data."
 - Milo Gibaldi

Need to Reduce Our Reliance on *In Vivo* BE Studies: Why?

- Ethical reasons
 - 21 CFR 320.25(a) "... no unnecessary human research should be done."
 - Science continues to provide new methods to identify and eliminate unnecessary *in vivo* BE studies
- Focus on prevention "building quality into products" "right first time"
- Time and cost of drug development and review

Prior to SUPAC-IR/BCS

- *in vivo* bioequivalence (BE) assessments to justify (a majority of) manufacturing changes
- preferred use of "prior approval supplement" process to implement changes

Ajaz Hussain, FDA

BCS: Regulatory History

```
1990 - Research (FDA, MPA,Univ. Michigan, Uppsala, and Maryland)
4/1996 - BCS Working Group formed to develop a guidance
8/1996 - ACPS Discussion
 4/1997 - AAPS/CRS/FDA Workshop
6/1997 - EUFEPS 4th Int. Conference on Drug Absorption
        - "Expert Panel" Meeting
10/1997
8/1998 - AAPS Workshop on Permeability Methods
        - ACPS Discussion
10/1998
        - Draft Guidance Published
 2/1999
        - Internal Training
 6/2000
         Final Guidance Published
 8/2000
         External Training
 9/2000
         Next Steps
                      Ajaz Hussain, FDA
```

Next Steps

- New BCS Technical Committee
 - Chair: Lawrence Yu
 - Address implementation questions
 - Database and prospective research for extensions (links to PQRI and FIP)
 - · Class III and Class II drugs
- Further research (FDA)
 - Extension of BCS based biowaivers
 - Waiver of "fed" bioequivalence studies
- Continuation of educational initiatives
 - practitioners and public
- International harmonization

SUPAC-IR/BCS: For some 'Level 2' Changes

	HS/HP	LS/HP	HS/LP	LS/LP
Critical Process	Gastric Emptying	Dissolution	Permeability	D/P
IVIVC	Not likely	Likely	Not likely	(?)
Method	0.1 N HCl	pH 1 - 7.4	App/Comp	In Vivo BE
Acceptance	Single point	Multiple	Single profile	AUC & Cmax
Criteria	85% in 15 min	profiles	(f2 > or = 50)	90% CI
		(f2 > or = 5)		80-125%

Note: NTI drugs excluded for some Level 2 Changes

Waiver of *in vivo* BE studies based on BCS (8/30/2000)

- Recommended for a solid oral <u>Test</u> product that exhibit *rapid* (85% in 30 min) and *similar* in vitro dissolution under specified conditions to an approved <u>Reference</u> product when the following conditions are satisfied:
 - Products are pharmaceutical equivalent
 - Drug substance is *highly soluble* and *highly permeable* and is not considered have a *narrow therapeutic range*
 - Excipients used are not likely to effect drug absorption

BCS: Class Membership

- High Solubility
 - the highest dose strength is soluble in ≤250 mL aqueous buffers over pH range of at 37°C.
- High Permeability
 - extent of absorption in humans is determined to be $\geq 90\%$
- Rapid Dissolution
 - ⁴ − ≥ 85% dissolves within 30 minutes in 0.1 HCl (or SGF), pH 4.5, and pH 6.8 buffers (or SIF) using Apparatus I at 100 rpm or Apparatus II at 50 rpm.

Risk of Bio-in-equivalence

- Risk factors
 - Manufacturing changes pre/post approval
 - minor moderate major changes
 - Poor process capability
 - high between and within batch variability
 - Reliance on in vitro dissolution tests
 - single point specification sampling predictability
 - Other factors
 - deficiencies in BE study design Type II error

Bioequivalence - one of the critical links between quality and S&E

Ajaz Hussain, FDA

BCS a tool for risk management

- Assessment of risk
 - What is the risk of bio-in-equivalence between two pharmaceutical equivalent products when *in vitro* dissolution test comparisons are used for regulatory decisions?
 - Likelihood of occurrence and the severity of the consequences?
- Regulatory Decision
 - whether or not the risks are such that the project can be persued with or without additional arrangements to mitigate the risk
- Acceptability of the Decision
 - is the decision acceptable to society?

Minimizing Risk of Bio-inequivalence

- Does *in vitro* dissolution process emulates *in vivo* dissolution process?
 - Dosage form disintegration, dissolution and stability
 - Gastrointestinal fluid volume, composition, and hydrodynamic conditions
 - Residence time (undissolved and dissolved drug) in stomach and small intestine
- Impact of excipients differences on GI physiology drug bioavailability?

Dissolution Test Methods

- $> 900 \text{ ml}, 37^{\circ}\text{C}$
- > Water, 0.1 N HCl, pH 6.8 buffer, or...
- > 50 rpm (paddle), 100 rpm (basket),...
- > Vessel geometry
- > Location of dosage unit

Typical Physiologic Parameters: Single Dose Fasting BE Study Volume = Gastric fluid + 8 oz water (~300 ml) pH of gastric fluid = 1-3 Res. time (fasting) = variable; T50%=15 min. Permeability - Low, compared to Small Intestine. Surface tension lower than water, Hydrodynamics? Volume (fasting) = what gets emptied + SI vol.(500 ml?) pH = 3-8, surface tension low,... Res. time (fasting): 2-4 hours Permeability - high compared to other parts

Dissolution tests: Debates

- Dissolution tests are "over discriminating"
- Products that dissolve about 70% in 45 minutes have no medically relevant bioequivalence problems
- Dissolution tests are not sufficient to assure bioequivalence
- Demonstration of IVIVC is necessary
- IVIVC's are "Product Specific"

Dissolution Test Problems: False +ives and -ives

					Ref. Mean
	15 min	30 min	45 min	AUC	Cmax
Ref	95	96	98	100	100
В	96	97	97	104	95
С	62	84	92	84	55
D	82	94	95	88	87
Е	103	103	103	112	120

I. J. MacGilvery. Bioequivalence: A Canadian Regulatory Perspective. In, Pharmaceutical Bioequivalence

Eds. Welling, Tse, and Dighe, Marcel Dekker, Inc., New York. (1992)).

NDA #X: Bioequivalent?

- Drug X (100 mg dose, volume required to dissolve the dose at pH 8, lowest solubility, is 230 ml, extent of absorption from a solution is 95%)
- Weak base exhibits a sharp decline in solubility with increasing pH above 3
- Clinical-trial formulation: Wet granulation, drug particle size (D50%) 80 microns, lactose MCC, starch, Mg-stearte, silicon dioxide. Tablet weight 250 mg. Dissolution in 0.1 N HCl 65% in 15 min and 100 % in 20 minutes. Disintegration time 10 minutes.
- The company wants to manufacture the product using direct compression.
- To-Be-Marketed formulation: Direct compression, drug particle size (D50%) 300 microns, dicalcium phosphate, MCC, Mg-stearate, silicon dioxide. Tablet weight 500 mg. Dissolution in 0.1 N HCl 85% in 15 min., and 95% in 20 min. Disintegration 1 min.
- Clincal product exhibits poor dissolution in pH 7.4 media (about 30% in 60 minutes). Data for T-b-M not available.

In Vitro & In Vivo Dissolution

- Dissolution methods evolved over last thirty years - reproducible test method for lot-lot quality assurance
 - Dissolution media volume and composition selected to maintain "sink" conditions
 - *In vivo* dissolution is a complex process (e.g., pH profile, bile concentration, motility patterns)
 - *In vivo* "sink" condition created due to intestinal permeability

Ajaz Hussain, FDA

In Vitro - In Vivo Correlations

- When dissolution is slow (rate limiting) *IVIVC* have been demonstrated, however such a correlation may not hold when certain formulation changes are introduced
 - For ER products a change in release mechanism
 - For IR products of low solubility drugs (e.g., spirinolactone and carban *zapine)

Reliance on current dissolution practice can poses an unacceptable level of risk

- Compared to high solubility drugs, risk is higher for low solubility drugs
- Products with slow or extended dissolution profiles pose a higher risk (dissolution rate limiting)
 - Need for a rapid dissolution criteria
- Potential for significant differences between *in vivo* and *in vitro* "sink" conditions higher for low permeability drugs

Risk Factor: Excipients

• Is the [current] approach of evaluating excipients for decisions related to biowaiver of oral solutions sufficient?

Ajaz Hussain, FDA

Sorbitol/Mannitol: Impact on Bioavailability

- 2.3 grams of mannitol in a chewable tablet reduced bioavailability of cimetidine (a <u>low permeability</u> drug, per FDA's BCS Guidance) compared to a tablet containing the same amount of sucrose
 - AUC, Cmax, and Tmax ratios of the mean values were 71%, 46%, and 167%, respectively
 - Sparrow et al. J. Pharm. Sci. 84: 1405-1409. (1995)
- About 10 grams of sorbitol had no (minimal) effect on bioavailability (Cmax and AUC) of theophylline (a high permeability drug)
 - Fassihi et al. Int. J. Pharm. 72: 175-178, (1991)

Experimental Formulations

Ingredient	Test Formulation	Reference Formulation	BCS Permeability
Ranitidine or Metoproloi	0.15 g 0.1 g	0.15 g 0.1 g	Low High
Sucrose	-	5 g	High*
Sorbitol	5 g	-	Low
Water	15 ml	15 ml	High

^{*} Rapidly metabolized at/in the intestinal wall to glucose and fructose, both exhibit complete absorption

Bioequivalence Assessment

Parameter	Lower	Upper
	90% CI	90%CI
Ln (Cmax)	Ran: 44%	Ran: 54%
	Met : 71 %	Met: 85%
Ln(AUCi)	Ran: 52%	Ran: 62%
	Met: 86%	Met: 100%

Note: Solution containing sucrose was used as the reference

Risk Factor: Excipients

- Is the [current] approach of evaluating excipients for decisions related to biowaiver of oral solutions sufficient?
 - For BCS based biowaivers a higher standard was adopted (by limiting biowaivers to *highly permeable* drugs)
 - excipients used in solid oral products less likely to impact drug absorption compared to liquid oral product
 - High permeability attribute reduces the risk of bio-inequivalence
 - decreased small intestinal residence time by osmotic ingredients
 - enhanced intestinal permeability (potentially by surfactants)

BCS Class Boundaries: Objectives

Rapid dissolution - ensure that in vivo dissolution is not likely to be the "rate determining" step

High solubility - ensure that solubility is not likely to limit dissolution and, therefore, absorption

High permeability - ensure that drug is completely absorbed during the limited transit time through the small intestine

Experience with BCS based biowaivers

- Strong support from scientific community
 - ACPS, Experts, FDA staff, Public workshops
- Some concerns expressed at public workshops and comments on draft guidance
 - "overly conservative" should also apply to Class III and some class II drugs
 - application for Generics
 - impact of excipients
- Submission activity low, higher for NDA's

