Oregon Department of Transportation Bridge Limitation Study

Third Oregon Symposium on Integrated Land Use & Transport Models

July 23, 2002

MAGNITUDE OF THE PROBLEM

Bridge Deficiencies:

6,500 Bridges in Oregon (40% ODOT maintained)5% nearing design life50 year design, average age 39 yrs

8% detected cracking10% slated for repair/replace

Price Tag:

\$109M/year (in 2000\$) over 10 years (\$1B+) Double current funding level.

TYPICAL APPROACH

- ODOT Problem
- Focused Engineering solution
 - maintain mobility
 - minimize bridge repair/replacement costs
 - "Worst first" approach to improvements
- Little focus on impact to other state issues
 - economy
 - environment
 - sustainability
 - livability
 - connectivity

PROPOSED APPROACH (using integrated analysis)

- Oregon Problem
- Economic Crisis
- Optimal economic and technical solutions
 - maintain mobility
 - minimize bridge repair/replacement costs
 - Costs to key industries
 - Costs to communities
 - Costs to local/national transport sectors
- Opportunities for integrated strategic policy solutions
 - Stimulate economic development
 - Limit impacts on community livability
 - Sustainable growth

WHO IS IMPACTED?

Bridge load limitations affect:

- Very heavy goods transport (over 80,000 lbs)
 - operational cost
 - manufacturing/locations
 - warehousing/transfers
- Industry
- Communities
 - Migration of industry/population
 - Land consumption patterns
 - Disruption to Downtowns
 - Air/Water Quality Impacts
- Roadway on new routes
- Consumers
- Environmental, livability, and sustainability

ALTERNATIVES

- No Change (fix worst first)
- Base Case: Maintain Existing Freight Mobility

Corridor-based combinations

• Fix All Bridges

REPAIR I-5/I-84 ODOT Frt Routes REPLACE NHS Key Local Roads LIMIT TO 105.5K local roads LIMIT TO 80K district roads

Evaluate for each alternative:

Bridge Improvement Costs Economic/Community Costs

KEY FREIGHT ROUTES

OREGON ECONOMIC IMPACTS

Which Goods?

Very Heavy Transport

OREGON ECONOMIC IMPACTS

Which Economic Activities?

Very Heavy Transport

LOCATION OF KEY INDUSTRIES

MODELING METRICS

- Transport Costs
 - Distance/time
 - Shipping
- Production Costs
- Employment/Households
- Roadway volumes (freight trips and tons)
- Energy Consumption
- Emissions

Proportional differences relative to Base Case scenario

SHIPPING COSTS

Source: Preliminary TRANUS model output, July 2002

FREIGHT SYSTEM CONDITIONS

ANALYSIS TEAM

- Oregon Transportation Commission (OTC)
 - Select approach
 - Recommend to Legislature
- ODOT Bridge Options Team
 - Mobilize staff for data/analysis
 - Evaluate staff analyses
 - Recommend to OTC
- Project team
 - Propose project approach/alternatives for study
 - Conduct analyses

SCHEDULE

Late July Mid-August September

On-going January Complete initial model runs Complete modeling and roadway analysis Complete economic, land use, environmental, local impact analyses Review with ODOT Senior Mgmt/OTC Finalize presentation for legislature

