Agent-Based Micro-Simulation of Business Establishments in ILUTE

JD Hunt

Third Oregon Symposium on Integrated Land Use and Transport Models

Portland OR, USA 23-25 July 2002

Outline Describe Research Concerning Potential for Micro-simulation of Business Activity

- Introduction
- Approach
- Testbed Application
- Conclusions

Introduction Context

- PhD Research at University of Calgary
 - student: JAS Khan
 - supervisor: JD Hunt
 - support: JE Abraham, as PDF
- ILUTE project funds
 - less concern about short-term practical relevance
 - more concern about longer-term possibilities for practice
 - less focus on calibration, more on behaviour and potentials

Introduction Terms

- Business Establishment (BE) portion of a firm conducting activities at a single physical location
- Firmography: demography for BEs, covering:
 - births
 - deaths
 - locations/relocation/migration
 - growth

Approach Behavior Represented

- Includes behavior of and interactions among:
 - BEs
 - land development
- Part of larger simulation system as in TLUMIP2
- Draws on:
 - same model of firm behavior implied in PECAS, but at agent rather than aggregate level
 - same sort of treatment as used for households in HA
 - land development for relevant commercial space types as in LD

Approach Simulation Methods

- Monte Carlo Technique:
 - selecting changes in states from sampling distributions based on probabilistic choice models and sampling distributions
- Each BE considered once per year
- Floorspace development changes considered once per year
- Prices updated each 6 months

Approach BE Representation

- BE properties:
 - consumption behavior (production function), what is used per unit of output:
 - commodities
 - labour
 - floorspace
 - production behaviour, what is produced
 - age (number of years BE active)
 - geographical location cell where located

Approach BE Dynamic Behavior

- Each year BE makes decision to
 - 'stay', in same floorspace area in same cell
 - 'relocate' to some other floorspace area in another cell
 - 'leave', the model area (emigrating or folding up) :
- Using a nested logit model
 - at top level of PECAS hierarchy of models
 - with composite utilities from PECAS hierarchy feeding up

Price changes at each exchange zone every 6 months

 $Price_{t} = Price_{t-1} - Price_{b}(z_{1} / z_{2} - eqvr.)\theta_{2}$

Approach LD Dynamic Behavior

Floorspace changes each year

Similar to LD

Testbed Application Hypothetical Case

- test geography
 - 9 x 9= 81 zones, each with 100 cells
 - each cell 1 acre
- mix of sizes and types of establishments
 - start with 1,400 BEs
 - 3 commodities
- mix of initial floorspace types and quantities in each cell
 3 space types, range of allowable FARs
- static external economic conditions
- runs for 100 years

Commercial Space (F.A.R)

C1 = Low density = 1 C2 = Medium density = 2 C3 = High density = 15V = Vacant

Legend:

Residential Space (F.A.R)

R1 = Low density = 0.5

R2 = Medium density = 1

R3 = High density = 15

1-Acre = 43560 sq-feet

Testbed Application Initial Floorspace

Taz	# of GridCells	Area/cell	Dev Type	Min Dev	Max Dev	Min Age	Max Age	Z scheme
203	6	43560	Vacant	21666.66667	21833.3333	10	15	R1
204	85	43560	Vacant	21666.66667	21833.3333	10	15	R1
204	15	43560	Vacant	0	0	0	0	R1
205	50	43560	Vacant	21666.66667	21833.3333	10	15	R1
205	50	43560	Vacant	0	0	0	0	R1
206	100	43560	Vacant	0	0	0	0	R1
207	100	43560	Vacant	0	0	0	0	C10RR1
208	100	43560	Vacant	0	0	0	0	R1
209	100	43560	Vacant	0	0	0	0	C1ORR1
210	100	43560	Vacant	0	0	0	0	R1
301	100	43560	Vacant	0	0	0	0	R1
302	90	43560	Vacant	0	0	0	0	R1
302	10	43560	Vacant	21666.66667	21833.3333	10	15	R1
303	15	43560	Vacant	0	0	0	0	R1
303	85	43560	Residential	21666.66667	21833.3333	10	15	R1
303	100	43560	Vacant	0	0	0	0	R1
304	92	43560	Residential	21666.66667	21833.3333	10	15	R1
304	8	43560	Vacant	0	0	0	0	R1
305	95	43560	Vacant	0	0	0	0	R1
305	5	43560	Residential	21666.66667	21833.3333	10	15	R1
306	55	43560	Vacant	0	0	0	0	Vacant
306	45	43560	Vacant	0	0	0	0	C3ORR3
307	90	43560	Vacant	0	0	0	0	C1ORR1
307	10	43560	Vacant	0	0	0	0	C3ORR3
308	65	43560	Vacant	0	0	0	0	R1

Testbed Application Zoning

Zoning Scheme	Allowed Development Type	Maximum FAR
R1	Vacant	0
R1	Residential	0.5
R2	Vacant	0
R2	Residential	1
R3	Vacant	0
R3	Residential	15
C1	Vacant	0
C1	Commercial	1
C2	Vacant	0
C2	Commercial	2
C3	Vacant	0
C3	Commercial	15
C2ORR2	Vacant	0
C2ORR2	Commercial	2
C2ORR2	Residential	5
C1ORC2	Commercial	1.5
C1ORC2	Vacant	0
C3ORR3	Vacant	0
C3ORR3	Commercial	15
C3ORR3	Residential	15
C1ORR1	Vacant	0
C1ORR1	Commercial	1
C1ORR1	Residential	1
Vacant	Vacant	0

Testbed Application Calibration

- adjust parameters until:
 - model stable
 - results not unreasonable
- work iteratively, parameter by parameter
- note emphasis on understanding and testing rather than practical results

Testbed Application Calibration

Û,

z	Floorspace used by year Equilibrium vacancy rate	N	Vacancy rate

Simulation Model (Business Establishments) 300 280 260 240 No. of BEs 'Left-Stayed-Moved' 220 200 180 160 140 120 100 80 60 ومتناف بالالبة والبارية للالمرة المرويا المرويا المرواد المرواد المرواد 40 وردوار أكارور وأراك وردوار الاراك وردر كالكرور ورياك وروز والمرور والمالي وردار والمرد الوردار والمرور ووارياه 20 internationaliste atio in site in survey water in a state of 0 2 4 6 8 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 Simulation Year

BE Moved 🔽 BE Styed 🔽 BE Left

Reference Case

30% floorspace rent increase zones 202, 203, 204

Reference Case

30% floorspace rent subsidy zones 202, 203, 204

Testbed Application Alternative Policy Test 3 50% development cost subsidy Reference Case zones 202, 203, 204

Tracking of BEs in Zones 9

Reference Case

30% price increase various zones

Reference Case

double travel costs everywhere

Reference Case

new freeway; reduced travel times and costs

increase allowable development Reference Case all kinds zones 202, 203, 204

Reference Case changed allowable development for commercial, various zones

Conclusions

Model and approach work:

- reasonable aggregate behavior from disaggregate treatment
- policy responses as expected

Increased understanding of system:

- link from individual BEs to aggregate patterns
- new perceptions of
 - Von Thunen
 - Alonso
 - Christaller Central Place Theory
- Seems to offer interesting potential way ahead in practical modeling, but ...

Conclusions

Run times an issue:

- 10 hours for 100 years of hypothetical scenario
- using 1GHz computer with 800 MB of RAM

Range of BE sizes and types:

- no growing and declining, just appearing and 'leaving'
- range of technologies, but simplified

 Reality much more complex, with many more commodity types, interactions and markets

Substantial data issues also side-stepped here

Gap to full-blown practical application

- greater than with mirco-simulation of households
- a ways into future more questions arising