Person Transport Component Of The TLUMIP Second Generation Model

Third Oregon Symposium on Integrated Land Use and Transport Models July 23-25, 2002

Person Transport Model Considerations

- Develop models that address:
 - Travel as a consequence of activities
 - Persons as the core unit of analysis
 - Travel time and cost across all modes
 - Disaggregate treatment of time
 - = Tour-Based Micro-Simulation Models!!

Tour-Based Model Overview

What is a tour?

- A series of trips beginning and ending at home or work (anchor locations)
- Primary destination, intermediate stops
- No more non-home-based trips!!
- Tour Purpose Classification Hierarchical
 - Mandatory Work, School
 - Maintenance Shop, pickup/drop-off
 - Discretionary Social/Recreational, Other

Third Oregon Symposium on Integrated Land Use and Transport Models

Drop-off Kids at School/Daycare

Why Tour Models?

- More precise representation of travel
- Greater behavioral realism (consistency)
- More information available for analysis
- Better able to address transportation demand management policies

Tour-Based Model Overview

What is micro-simulation?

- Synthetic sample drawn that represents actual population
- Travel explicitly modeled for each person/household
- Monte Carlo simulation instead of fractional probability aggregation
- Variable results

Tour-Based Model Overview

Why Micro-simulation?

- Computationally efficient for large numbers of market segments
- Increased ability to include explanatory variables
- Substantial reduction in aggregation error
- Allows wide range of policy analysis: Lots of data!!

Abstract Tour-Based Model Schematic

Base-Year Synthetic Sample Generation

- General Approach
 - Choose margins or control variables
 - Forecast distribution of households by each margin for each TAZ
 - Matrix balancing to forecast joint distribution, using PUMS as seed
 - Sample households from PUMS distribution according to balanced matrix frequencies

1994 Oregon Household Survey

- 15,000 Households, 35,500 Persons in 4 MPOs and 11 Non-MPO Counties
- Two-Day Activity-Based Diary Survey
- 91,175 Tours, 1.3 Tours/Person/Day
- 219,208 Trips, 3.0 Trips/Person/Day

Oregon Household Survey Households

Tour Generation

- Day- Pattern Choice Model
 - Each out-of-home activity represented by a character
 - Characters form words that represent overall activity pattern
 - Each (available) observed pattern is a choice in multinomial logit model
- Advantage
 - No assumed hierarchy; sequence of activities/tours explicitly modeled; simple to apply

Day-Pattern Choice Model CHOICE HCH HSH HWH HRH HOH HOWH **HWSH HWRH HWOH** HBH **HWHSH HWHSH** HWHRH **HWHOH HWHOSH** (etc.) **HWHSRHOH HSSHOOHRH HWSHSHROH** H = Home

- W = Work
- C = School
- S = Shop
- R = Social/Recreational
- O = Other

pbConsult

B = Work w\Work-Based Tour

 ~ 3,000 Weekday Alternatives
~ 1,000 Weekend Alternatives (15,000 Households)

- Person Characteristics
 - Age, gender, work/school status
- Household Characteristics
 - Auto ownership, income
 - Household composition
 - Children by age, single parent
- Pattern/Tour Characteristics
 - Number of tours, tours by type, stops on tours, tour sequence, number of activities by type, etc.
- Destination Choice Logsums
 - Less accessible -> Less tours

Time-of-Day Models

Hazard-Based Duration Models

- Borrowed from medical research ~ analysis of treatment effects (Survival Analysis)
- Applied to each activity (in sequence) to determine duration *in minutes*
- Allow a continuous representation of time
- Baseline duration (survival function) and parameters modify that duration based on
 - household/person variables
 - day-pattern characteristics
 - tour characteristics
 - Activity sequence

Time-of-Day Models

pbConsult

 $S(t) = \exp\{-t^{\lambda} \exp[(-1/\sigma)(\beta_0 + \beta_1 x_1 + \beta_2 x_2 + ... + \beta_n x_n)]\}$

One model each for

- First, Intermediate At-Home activities
- Work, School, Shop, Recreate, Other activities
- Variables include:
 - Household Composition, Socio-economic characteristics
 - Number of Tours, Stops
 - Activity Start Time
 - Gen3: accessibilities, congestion: peak-spreading!

Third Oregon Symposium on Integrated Land Use and Transport Models

- Chooses primary activity location (TAZ) for each tour
- Place of residence, workplace determined by HA
- Full set of destinations considered (no sampling in application)
- Logit models with accessibilities represented by mode choice logsums

Tour Mode Choice Estimation Results

- Round-trip levels of service
- Person/Household characteristics
 - Cost coefficients stratified by household income
 - Household size directly related to passenger probability
- Alternative-specific constants stratified by:
 - Work tours: workers/autos
 - Other tours: household size/autos
- Number of stops on tour

Tour Mode versus Trip Mode

- Tour Mode Model
 - Logsum used for primary destination choice accessibility
 - Restricts selection set for mode of each trip
 - Used to select measure of accessibility for stop location destination choice
- Trip Mode Choice
 - Specific mode assigned for every leg of tour
 - Done on-the-fly in assignment (TS)

Tour-Based Model Output

Household Data, Person Data, Tour/Trip List

Third Oregon Symposium on Integrated Land Use and Transport Models

- Java Programming Language (OO)
- Communication to other components via common database (jDataStore)
- Run modes:
 - Market Segment Logsums
 - Individual Monte-Carlo Selections
- Reducing run-times through multithreading and distributing

Conclusions

- PT Status
 - Models fully estimated
 - Model application code up and running
 - Need to add grid-cell/link selection
 - Beginning model calibration (cross-sectional base-year)
 - Reducing runtimes through distribution, optimization
- Further specification
 - Additional market segmentation
 - Congestion effects in duration models
 - Long-distance and open-ended tours