UrbanSim

Simulating Interactions Between Urban Development, Transportation and the Environment

Historical Validation in Eugene-Springfield

Oregon Symposium

Outline of Presentation

- UrbanSim Overview
- Data Integration
- Longitudinal Validation

Computer Science & Engineering

Faculty: Alan Borning grad students: Michael Noth, Denise Pinnel undergrad students: Michael Becke, Matthew Dockrey, Nathan Freier

Evans School of Public Affairs Faculty: Paul Waddell

Architecture & Urban Planning

Faculty: Marina Alberti (Paul Waddell, joint appointment) grad students: Erik Botsford, Shannon Winger

Civil Engineering

Faculty: Scott Rutherford grad students: Gudmundur Ulfarsson

Economics

grad students: Yoram Bauman

UrbanSim Overview

Application

- Eugene-Springfield, Oregon
- Honolulu, Hawaii
- Salt Lake City, Utah
- Seattle, Washington

• Funding

- National Science Foundation
- National Cooperative Highway Research Program
- University of Washington
- Oregon Department of Transportation
- Governor's Office, State of Utah
- Oahu Metropolitan Planning Organization

Urban Development is Dynamic

- Not Everyone Moves
 - Moving Transaction costs are significant
 - Household Mobility Varies by Age, Inc.
 - Business Mobility Varies by Size, Sector
- Land Development is Incremental
 - Existing Buildings
 - New Construction
 - Redevelopment
 - Only 2% of stock of real estate is 'new'
- Processes occur in different time scales

UrbanSim Design Objectives

- Operational Use in Metropolitan Planning/Policy
- Support Analysis of Growth Management Strategies
- Support Strategic Planning for Infrastructure
- Transparent Behavioral Foundation
- Explore Interaction of Markets and Policies
- Analyze Trade-offs between public objectives
 - Efficiency
 - Equity
 - Environmental Impact
- Develop non-proprietary toolbox for urban modeling

Behavioral Representation

- Discrete Choice Framework
 - Household Mobility and Location Choice
 - Business Mobility and Location Choice
 - Developer Land Development/Redevelopment
 - Explicit Markets for Real Estate
- Governmental policies exogenous: scenarios
- Dynamic
 - Path-dependent (history matters)
 - Supply fixed in short run (one year)
 - Adjustment toward equilibrium in long-run
 - Annual time steps

Key Features of the Model

- Simulates Decisions of Urban Actors
- Explicit Representation of:
 - Land, Buildings and Occupants
 - Land Market and Prices
 - Government Policy and Infrastructure
- High Spatial, Sector Disaggregation
- Based on Random Utility Theory

Data Requirements

- Regional Control Totals
- Parcel Data
- Business Establishments
- Household Data (Census, Travel Survey)
- Land Use Plan
- Environmental Constraints
- Development Costs

Outputs

- Population and Households by Type
 - Income
 - Age
 - Household Size
 - Children
 - Workers
- Employment by Industry Sector
- Housing Units, Commercial Square Feet, Prices by Type
- All outputs by grid cell and by zone

Current Implementation

- Implemented in Java
- New Architecture for Spatial Simulation
 - Reusable Components
 - Variation in Spatial, Temporal and Behavioral Resolution
- Open Software: GNU General Public License
- Visualization Architecture
- 150 meter grid cell unit of analysis

UrbanSim Structure and Dynamics

Key Model Components

- Household and Employment Location
 - Standard multinomial logit
 - Grid cell is unit of choice
- Real Estate Development
 - Multinomial logit
 - 24 development type outcomes
- Real Estate Price Estimation
 - Hedonic regression

Residential Location Variables

- Housing Characteristics
 - Prices (interacted with income)
 - Development types (density, land use mix)
 - Housing age
- Regional accessibility
 - Job accessibility by auto-ownership group
 - Travel time to CBD and airport
- Urban design-scale (local accessibility)
 - Neighborhood land use mix and density
 - Neighborhood employment

Employment Location Variables

- Real Estate Characteristics
 - Prices
 - Development type (land use mix, density)
- Regional accessibility
 - Access to population
 - Travel time to CBD, airport
- Urban design-scale
 - Proximity to highway, arterials
 - Local agglomeration economies within & between sectors: center formation

Development Variables

- Site characteristics
 - Existing development characteristics
 - Land use plan
 - Environmental constraints
- Urban design-scale
 - Proximity to highway and arterials
 - Proximity to existing development
 - Neighborhood land use mix and property values
 - Recent development in neighborhood
- Regional
 - Access to population and employment
 - Travel time to CBD, airport
- Vacancy rates

Land Price Variables

- Site characteristics
 - Development type
 - Land use plan
 - Environmental constraints
- Regional accessibility
 - Access to population and employment
- Urban design-scale
 - Land use mix and density
 - Proximity to highway and arterials
- Vacancy rates

Travel Model Interface

- Supports travel models through ASCII file exchange
- Supports Interactive Analysis With Travel Models
- Accessibility from Travel Models
 - Composite Utility from Mode Choice Models
 - Activity Distribution at Destinations

Accessibility Index

$$Access_i = \sum_{j}^{J} A_j e^{\beta L_{ij}}$$

 A_j is the quantity of activity in location j L_{ij} is composite utility, or logsum (for one car households), from location i to j from Mode Choice Model. β is the utility scaling parameter, initially set to 1

(TM = Travel Model Year)

Growth Management Policies

- Land Use Plans
- Environmental Constraints

 - Slope Floodplan
 - Wetlands Stream buffers
 - Fault Zones Slide Zones
- Density Constraints (minimum and maximum)
- Urban Growth Boundaries

Evolution of UrbanSim

Characteristic	Prototype	Version 1.0	
Spatial Unit			
Location	Zone	Grid Cell	
Development	Parcel	Grid Cell	
Spatial Analysis	None	Spatial Queries	
Development	Deterministic	Logit	
Visualization	None	Prototype	
Aggregation	Aggregate	Microsimulation	

Application to Eugene-Springfield

Data Integration and Synthesis

- Integration of 1980 and 1994 Parcels
- 1980 and 1994 Employment
- Synthesis of Missing and Inconsistent Data
 - Parcel Data: Fill Missing Data from Surrounding Parcels
 - Business Matching: Build Space or Move
 - Household Matching: Build or Move

Spatial Units for Analysis

Input Data: Parcels

Development Types

Devtype	Name	UnitsLow	UnitsHi	SqftLow	SqftHi	PrimaryUse
1	R1	1	1	0	999	Residential
2	R2	2	4	0	999	Residential
3	R3	5	9	0	999	Residential
4	R4	10	14	0	2499	Residential
5	R5	15	21	0	2499	Residential
6	R6	22	30	0	2499	Residential
7	R7	31	75	0	4999	Residential
8	R8	76	65000	0	4999	Residential
9	M1	1	9	1000	4999	Mixed_R/C
10	M2	10	34	2500	4999	Mixed_R/C
11	M3	10	34	5000	24999	Mixed_R/C
12	M4	10	34	25000	49999	Mixed_R/C
13	M5	10	34	50000	9999999	Mixed_R/C
14	M6	31	65000	5000	24999	Mixed_R/C
15	M7	31	65000	25000	49999	Mixed_R/C
16	M8	31	65000	50000	9999999	Mixed_R/C
17	C1	0	9	1000	24999	Commercial
18	C2	0	9	25000	49999	Commercial
19	C3	0	9	50000	9999999	Commercial
20	l1	0	9	1000	24999	Industrial
21	12	0	9	25000	49999	Industrial
22	13	0	9	50000	9999999	Industrial
23	GV	0	9	1000	9999999	Government
24	VacantDev	0	0	0	0	VacantDevelopable
25	Undevelop	0	0	0	0	Undevelopable

Input Data: Household Travel Survey

Input Data: Employment

Input Data: UGB and Environmental

Input Data: Land Use Plan

Longitudinal Validation

- Based on Version 1.0
- 1980 to 1994
- Estimated coefficients without adjustment
- Constraint on development
 - Wetlands
 - Floodplain
 - Steep slopes
 - UGB

Simulated Housing Units by Developent Type

Simulated Nonresidential Sqft by Development Type

- R-Squared: Predicted 1994 vs Observed
- Cell Employment .64
- Cell Population .54
- Cell Land Value .45
- Cell Sqft .57
- Cell Units

- R-Squared: Predicted 1994 vs Observed
- Zone Employment .77
- Zone Population .84
- Zone Land Value .64
- Zone Sqft
- Zone Units .88

- R-Squared: Predicted 1994 vs Observed Cell Average with Radius of 1 cell
- Cell Employment .84
- Cell Population .81
- Cell Land Value .66
- Cell Sqft .82
- Cell Units

- R-Squared: Predicted 1994 vs Observed Cell Average with Radius of 2 cells
- Cell Employment .90
- Cell Population .88
- Cell Land Value .76
- Cell Sqft .89
- Cell Units

- R-Squared: Predicted 1994 vs Observed Cell Average with Radius of 3 cells
- Cell Employment .93
- Cell Population .91
- Cell Land Value .81
- Cell Sqft .92
- Cell Units

Future Work

- Short-term
 - Multiple interaction with travel models
 - Sensitivity testing
- Long-term
 - Lifestyle choices: integrate long and short-term
 - Labor market: participation, hours, job search
 - Housing market: tenure, mobility, housing search
 - Vehicle ownership
 - Daily activity and travel patterns
- Microsimulation of market interactions

Theoretical Framework: Lifestyle

- Market segmentation
 - Lifestyle: patterns of long and short-term choices
 - Segmentation using demographics, life cycle, values
 - Knowing segment improves predictive accuracy
- Lifestyle choice
 - Market segmentation begs the question
 - How do households choose a lifestyle?
 - How do choices evolve over life cycle?
 - How do choices adapt to exogenous changes?

More Information

- Release Schedule
 - Version 1.0 in next few weeks
 - Subsequent release:
 - User interface
 - Data preparation tools
 - Visualization
- Web site: http://urbansim.org