Activity Based Travel Demand Analysis and Modeling: Progress and Prospects

> Frank S. Koppelman Northwestern University

Second Oregon Symposium on Integrating Land Use and Transport Models July 18-20, 2000

Presentation Outline

ϑ Introduction

- O Principles and Approaches to Travel Demand Analysis
 Analysis
- ล Progress in Activity Modeling
- ລ Modeling Advances
- ิ Summary and conclusions

Modeling Principle

Develop the least complex representation of a real-world phenomenon which retains the most important elements of behavior required to enhance understanding and support decision-making.

The essence of travel behavior is its derivation from the needs/desires of individuals and households to satisfy activity participation needs.

Activity Based Travel Demand Analysis and Modeling: Progress and Prospects

Basis for Enhancements in Activity Based Travel Demand Modeling

Advances in

- Modeling
 - Computational and data management capabilities
- Behavioral understanding

Trip-based Approaches to Travel Demand Analysis

 A Focuses on independent trips and individuals
 Does not consider relationship between activities and trips

Activity Based Travel Demand Analysis and Modeling: Progress and Prospects

5

Activity-Based Approaches to Travel Demand Analysis

- ລ Framework recognizes complex space-time interactions and time-use context
- A Focuses on sequences of activity behavior, with day (or longer) as the unit of analysis

Activity Based Study Approaches

∂ Activity pattern analysis

Activity Based Travel Demand Analysis and Modeling: Progress and Prospects

TLUMIP Symposium, 2000

Conceptual Origins of Activity Analysis

ิ Motivation framework - Chapin

- Ω Space-time prism Hagerstrand

Activity Based Travel Demand Analysis and Modeling: Progress and Prospects

Theoretical Bases for Activity Analysis

 Motivational theories (psychology and anthropology) - behavior is dictated by felt needs

Sociological and Planning theories - influence of household structure, roles and relationships

 Seconomic theories - optimal time allocation based on market and non-market constraints
 Geographical and urban planning theory

Activity Based Travel Demand Analysis and Modeling: Progress and Prospects Frank S. Koppelman

Develop a Comprehensive Theory of Activity Pattern Analysis

- Time Allocation to Activity Types
- Scheduling
- Tours and Stop Assignment
- Activity and Resource Allocation
- Mode(s) for each tour
- Joint Activities

Accommodate Inter-Individual and Time Interactions in Activity Analysis

 (e.g., Bhat and Singh, 1998; Kitamura and Fujii, 1996)

 Others include inter-individual interactions but treat time as non-continuous

 (e.g., Wen and Koppelman, 1999; Gliebe and Koppelman, 2000]

Activity Based Travel Demand Analysis and Modeling: Progress and Prospects

Travel Complexity, Prevalence of Multi-Stop Tours

Number of home-based tours

		1	2	3+
Number	1	43.5%		
of	2	20.2%	35.7%	
daily	3	15.6%	21.1%	22.3%
stops	4+	20.7%	43.2%	77.7%
	Total	100.0%	100.0%	100.0%

Activity Based Travel Demand Analysis and Modeling: Progress and Prospects

12

Work and Non-work Tours by Gender

	VVork tours			
Non-work tours	None	Female Only	Male Only	Female & Male
None	9.1%	12.4%	14.3%	44.2%
Female Only	9.5%	2.8%	48.4%	19.4%
Male Only	12.7%	45.5%	5.3%	16.5%
Female & Male	68.8%	39.3%	32.0%	19.9%
Total	100.0%	100.0%	100.0%	100.0%

Activity Based Travel Demand Analysis and Modeling: Progress and Prospects

Work and Non-work Tours by Gender: No Children

	Work tours			
Non-work tours	None	Female Only	Male Only	Female & Male
None	9.8%	8.7%	14.9%	43.8%
Female Only	9.8%	4.3%	49.2%	17.5%
Male Only	14.2%	44.3%	7.0%	19.3%
Female & Male	66.2%	42.6%	28.9%	19.3%
Total	100.0%	100.0%	100.0%	100.0%

Activity Based Travel Demand Analysis and Modeling: Progress and Prospects

14

Work and Non-work Tours by Gender: Children in Household

Non-work tours	None	Female Only	Nale Only	Female & Male
None	7.6%	19.0%	13.2%	44.9%
Female Only	8.8%	0.0%	47.1%	23.2%
Nale Only	9.9%	47.6%	2.2%	10.9%
Female & Male	73.7%	33.3%	37.5%	21.0%
Total	100.0%	100.0%	100.0%	100.0%

More tours

Activity Based Travel Demand Analysis and Modeling: Progress and Prospects

Activity Pattern Travel Modeling

Tours, stops, auto and stop allocation

Computerized production systems

ລ Generation and Scheduling Models

Daily activity schedule analysis

Activity Based Travel Demand Analysis and Modeling: Progress and Prospects

The Activity Episode Generation and Scheduling Process

- 𝔅 Decision structure relationships for attributes of activity episodes

Joint vs. Individual Activity Participation

- Efficiency task synergy
- Companionship -- activity is partly or primarily social
- Altruism -- provide ride or support
- - Employment
 - Children in household
 - Auto ownership

Patterns of Joint Tours

End of joint sequence

	Return home	Depart
Start of Joint Sequence	together	separately
Leave home together	75.2%	7.5%
Meet out-of-home	11.2%	6.1%

15.2% of all person tours include one or more activity stops

Activity Based Travel Demand Analysis and Modeling: Progress and Prospects

TLUMIP Symposium, 2000

19

Household / Individual Utility Components

Frank S. Koppelman

Household / Individual Utility Components

1. Utility associated with value of activity participation

2. Total utility due to activity participation and household consumption effect

Frank S. Koppelman

Household / Individual Utility Components

Example: Impact of Young Child

Activity Based Travel Demand Analysis and Modeling: Progress and Prospects

Frank S. Koppelman

TLUMIP Symposium, 2000

Example: Impact of Young Child

Activity Based Travel Demand Analysis and Modeling: Progress and Prospects

Frank S. Koppelman

TLUMIP Symposium, 2000

Pattern Analysis Results: Better Specification of Trip-Based Models

Activity Based Travel Demand Analysis and Modeling: Progress and Prospects

Pattern Analysis Results: Emergence of Comprehensive Activity Models

- Time
- Mode
- Person
- Location

Modeling Substitution

Mode Choice Example

Generalized Nested Logit (GNL) Model

 Allows alternatives to be assigned to multiple nests in portions to be estimated

 A Reduces to MNL (and other GEV models) under appropriate restrictions

Activity Based Travel Demand Analysis and Modeling: Progress and Prospects

GNL Probability Equations

 $P_i = \sum_{m} \left[\frac{\text{Probability of alternative } i}{\text{Given nest } m \text{ chosen}} \times \text{Probability of nest } m \right]$

Activity Based Travel Demand Analysis and Modeling: Progress and Prospects

GNL Probability Equations

$$P_{i} = \sum_{m} \left[\frac{\left(\alpha_{im} e^{V_{i}}\right)^{\frac{1}{\theta_{m}}}}{\sum_{j \in N_{m}} \left(\alpha_{jm} e^{V_{j}}\right)^{\frac{1}{\theta_{m}}}} \times \frac{\left(\sum_{j \in N_{m}} \left(\alpha_{jm} e^{V_{j}}\right)^{\frac{1}{\theta_{m}}}\right)^{\theta_{m}}}{\sum_{m} \left(\sum_{j \in N_{m}} \left(\alpha_{jm} e^{V_{j}}\right)^{\frac{1}{\theta_{m}}}\right)^{\theta_{m}}} \right]$$

 V_i is the systematic component of the utility for alternative i N_m is the set of all alternatives included in nest m θ_m is the similarity parameter for nest m α_{im} is the portion of alternative i allocated to nest m

Activity Based Travel Demand Analysis and Modeling: Progress and Prospects Frank S. Koppelman TLUMIP Symposium, 2000

GNL Model 1

Frank S. Koppelman

Activity Based Travel Demand Analysis and Modeling: Progress and Prospects

GNL Model 2

Frank S. Koppelman

Activity Based Travel Demand Analysis and Modeling: Progress and Prospects

TLUMIP Symposium, 2000

Implication for Regional and Statewide Activity Modeling

 Inhancement of policy analysis (policies which influence individual/household activity patterns)

- Urban development and location patterns

Activity Based Travel Demand Analysis and Modeling: Progress and Prospects

Future Directions

Ω Time-space interactions

 \mathfrak{O} The decision mechanism

Activity Based Travel Demand Analysis and Modeling: Progress and Prospects Frank S. Koppelman TLUMIP Symposium, 2000

Summary

- Activity based travel paradigm is increasingly accepted as the basis for demand analysis