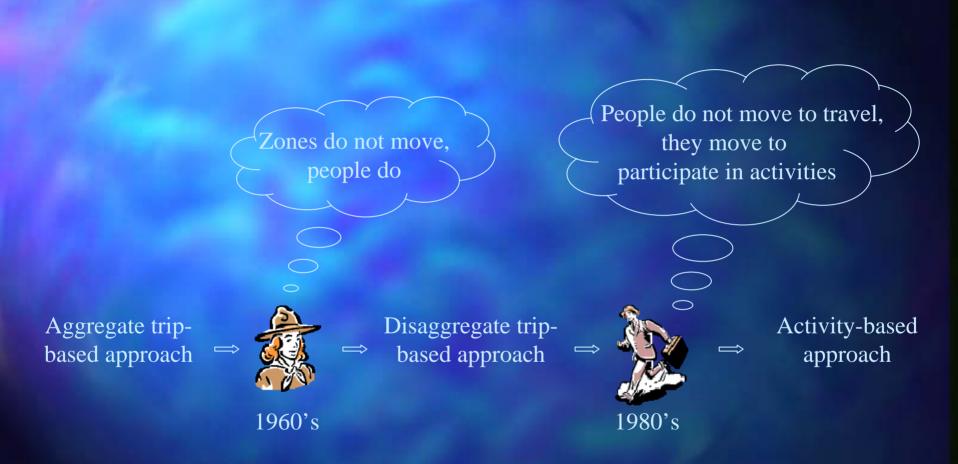
Activity-Based Travel Demand Modeling

Chandra Bhat UT Austin

September 30, 1998 Oregon Symposium

Presentation Structure


Background

- Need for activity-based travel analysis
- Fundamental concepts and structural framework
- Possible modeling framework
- Recent methodological advances
- Summary and conclusions

- Travel demand models are used to analyze travel characteristics
- Travel forecasts are important determinants of capital decisions
- Improved models can enhance quality of decisions

Evolution of Travel Demand Forecasting Techniques

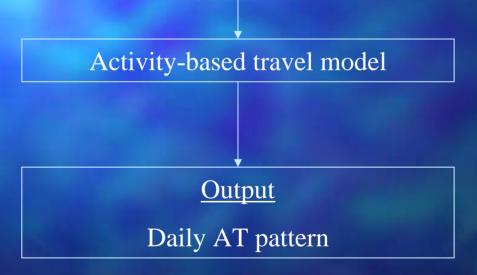
Practical Need for Activity-Based Travel Analysis

■ Tour mode ⇔ number of stops
 ■ Substitution effects
 ■ Time of day

 ● TCM analysis
 ● Link volumes
 ■ Number of trip starts
 ■ Travel time duration
 ● Cold and hot starts

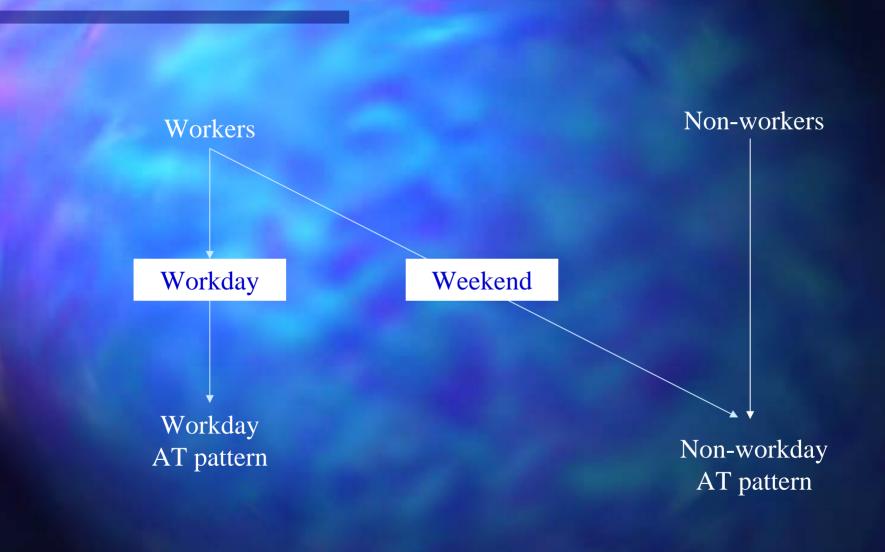
Activity-travel patterns along a continuous time domain

Time-space interactions

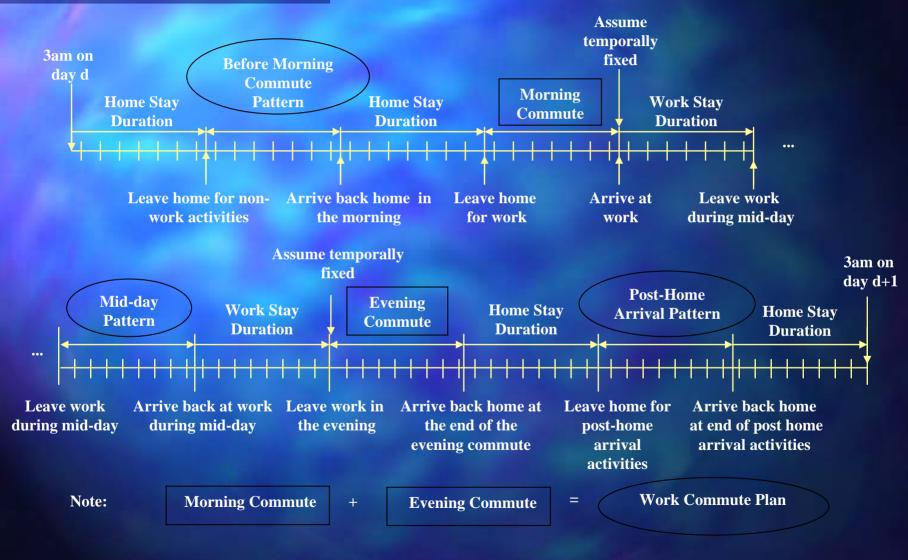

Fundamental Concepts

- Travel is a derived demand
- Complex interactions necessitate analyzing sequences or patterns of activity behavior
- Unit of analysis: whole day or longer time period
- Time is a continuous entity
- Interactions exist among individuals

Activity-Travel (AT) Analysis: Structural Framework


<u>Inputs</u>

HH/Individual demographics AT environment Medium-range AT decisions



Activity-Based Travel Demand Modeling Chandra Bhat

Daily AT Pattern

Worker's Daily Activity Travel Pattern

Activity-Based Travel Demand Modeling Chandra Bhat

Attributes of Workday AT Pattern (1)

Pattern-level attributes

 Number of tours (before morning commute pattern, midday pattern, post home-arrival pattern)

Home-stay duration before morning commute

Attributes of Workday AT Pattern (2)

Tour-level attributes

- ♦ Travel mode
- Number of stops
- Home-stay duration before each tour in the before morning commute and post home-arrival patterns
- Work stay duration before each tour in midday pattern
- Sequence of tour in pattern

Attributes of Workday AT Pattern (3)

Stop-level attributes

Activity type
Travel time to stop from previous stop
Location of stop
Sequence of stop in tour

Distribution of Number of Tours

Boston data Bay Area data

	Percentage of each number of tours in								
# of tours		e work tern		-day tern	Post-home arrival pattern				
0	96.9	96.9	65.6	74.0	67.6	79.7			
1	3.0	2.9	29.2	22.5	28.5	18.2			
2	0.1	0.2	4.0	2.8	3.4	1.9			
≥3	0.0	0.0	1.2	0.7	0.5	0.3			

- Focus on presence/absence of a first tour in each pattern and then model presence/absence of second tour
- Consider interactions in first tour only across different periods of the day

Distribution of Number of Stops

	Percentage of each number of stops in									
# of stops	ps Before work pattern		Morning Commute		Mid-day pattern		Evening Commute		Post-home arrival pattern	
0	96.9	96.9	85.3	85.2	65.6	74.0	64.8	74.0	67.6	79.7
1	2.3	2.2	11.3	11.5	24.6	17.8	24.1	17.8	23.1	14.2
2	0.5	0.5	2.8	2.5	6.4	4.4	7.9	5.1	6.8	3.9
3	0.2	0.3	0.5	0.6	2.4	2.0	2.4	1.9	2.0	1.4
4	0.1	0.1	0.1	0.2	0.5	0.9	0.7	0.9	0.5	0.5
≥5	0.0	0.0	0.0	0.0	0.5	0.9	0.1	0.3	0.0	0.3

■ Midday, evening commute, post-home arrival stops
⇒ morning commute stops ⇒ before work stops

First stop in each period \Rightarrow second stop \Rightarrow ...

Activity-Based Travel Demand Modeling Chandra Bhat

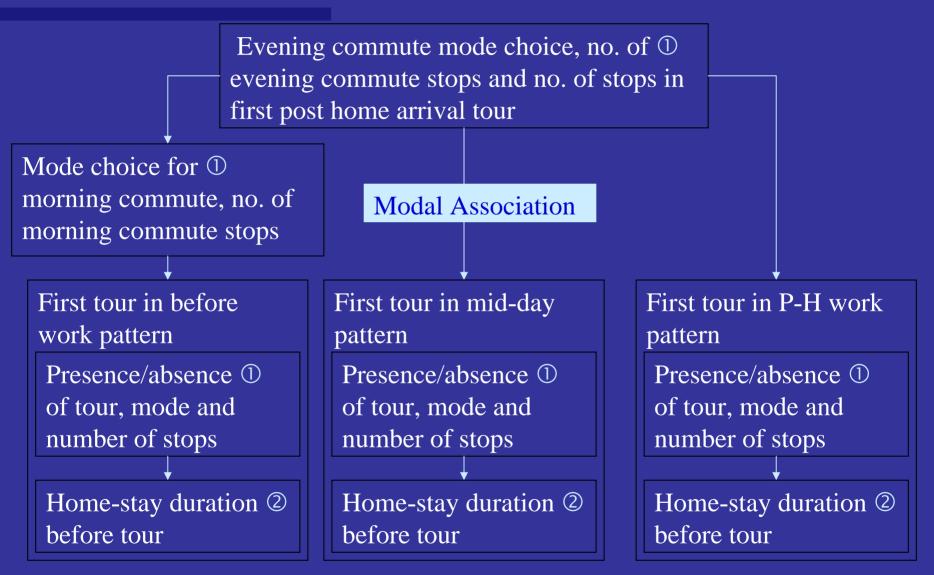
Interaction in Stop-Making Across Different Times of Day

	Value Label	Percentage of individuals making a stop during							
Control Variable		Mid	-day	Evening		Post-home			
				commute		arrival period			
Made a mid-day	Yes	-	-	36.7	28.0	32.8	23.2		
stop?	No	-	-	34.4	25.3	32.2	20.5		
Made an evening	Yes	35.9	27.6	-		25.3	13.2		
commute stop?	No	33.6	25.4	-	-	36.3	22.8		
Made a post-	Yes	34.8	27.4	27.5	18.1	-			
home arrival	No	34.2	25.6	38.9	28.0	-			
stop?									

Distribution of Activity Type of Stops

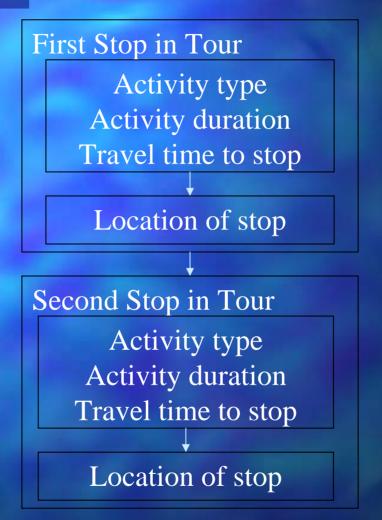
	Percentage of stops for each activity type during							
Activity type	Mid	-day	Ever com	0	Post-home arrival period			
Home	11.6 8.9		0.0	0.0	0.0	0.0		
Pick-up/drop off	1.5	2.8	10.9	14.4	11.7	11.0		
Work-related	18.4	19.3	2.6	10.1	1.8	2.8		
School	1.5	0.3	1.6	2.3	1.8	4.2		
Shopping	9.6	5.5	30.1	27.2	25.2	24.3		
Social/recreational	2.9	3.7	16.5	15.6	32.8	27.3		
Eat-out	39.1	41.9	7.0	4.8	11.0	12.4		
Personal Business	15.4	13.5	31.3	25.6	15.7	15.7		

- Model number of stops in evening commute and first post home arrival tour jointly
- Model midday stop making independently


Activity-Based Travel Demand Modeling Chandra Bhat

Evening Commute Mode Choice and Number of Stops

Category	Drive alone	Non-Drive
		Alone
% making commute stops	37.8	11.7
% making post-home arrival stops	38.6	36.7


- Model evening commute mode choice, number of evening commute stops and number of stops in first post-home arrival tour jointly
- Model travel mode for first post-home arrival tour conditional on number of stops in the tour

Modeling Framework for Pattern/Tour Level Attributes

Activity-Based Travel Demand Modeling Chandra Bhat

Modeling Framework for Stop-Level Attributes

Motivated by:

- Refinements in discrete choice modeling
- Increasing realization of the need to model travel as part of a more holistic activity-travel pattern

Topics discussed

- Discrete choice models
- Duration modeling
- Limited-dependent variable models

Recent Methodological Advances (2)

Topics not discussed

- Detailed information on model structure/estimation
- Developments in survey data collection or imputation
- Advances in joint estimation from RP-SP data
- Panel data methods
- Computational process models

Discrete Choice Modeling

Multinomial logit (MNL) model has been most widely used

MNL model assumptions include:
 IID type I extreme-value error structure across alternatives
 Homogeneity in responsiveness to attributes of alternatives
 Identical error variance-covariance matrix across individuals

Relaxing IID (Across Alternatives)

Identical, but non-independent random components

Non-identical, but independent random components

Non-identical, non-independent random components

Normal or type I extreme-value
 Type I extreme-value preferred
 GEV class

 NL
 PCL (Chu, Koppelman & Wen)
 CNL (Vovsha, 1996)
 OGEV (Small, 1987)
 MNL-OGEV (Bhat, 1997)

Advantage: closed-form
 Limitation: restrictions on dissimilarity parameters

Non-Identical, but Independent Random Components

NE (Daganzo, 1979)

Oddball model (Recker, 1995)

HEV (Bhat, 1995)

Non-Identical, Non-Independent Random Components

Error-components logit or probit (Train, 1995; Ben-Akiva & Bolduc, 1996; Bhat, 1997)

$$U_i = V_i + \zeta_i$$
$$= V_i + \mu' z_i + \varepsilon_i$$

MNP (Bunch & Kitamura, 1993; Mahmassani, 1996; marketing)

Activity-Based Travel Demand Modeling Chandra Bhat

Relaxing Homogeneity in Responsiveness

Variation in coefficients

- Random coefficients with no systematic coefficient variation (Fischer & Nagin, 1985; Revelt & Train, 1996; Mehndiratti, 1996)
- Random coefficients with systematic variation (Bhat, 1996)

$$U_{qi} = \alpha_i + \delta'_i z_q + \varepsilon_{qi} + \eta'_q x_{qi}$$

$$\eta_{qk} = \pm \exp(\gamma_k + \nu_{qk})$$

$$\eta_{qk} = \pm \exp(\gamma_k + \beta'_k \omega_{qk} + \nu_{qk})$$

Activity-Based Travel Demand Modeling Chandra Bhat

Segmentation Approaches

Exogenous segmentation
 Identify mutually-exclusive segments

 Endogenous segmentation (Swait, 1994; Gopinath & Ben-Akiva, 1995; Bhat, 1997; marketing)
 Probabilistic assignment

Relaxing Error Variance-Covariance Structure Homogeneity Across Individuals

Variance relaxation (Swait & Adamowicz, 1996; McMillen, 1995; Steckel & Vanhonacker, 1988)

Covariance relaxation (Bhat, 1997; Kamakura et al., 1996)

Variance and covariance relaxation

Hazard Duration Models (1)

Modeling activity duration

Focus on end-of-duration given that duration has lasted to some specified time

Two specification issues

Distributional assumption regarding duration

Assumptions about unobserved heterogeneity

Baseline hazard distribution

- Parametric (exponential, weibull, log-logistic, gamma, log-normal)
- Nonparametric

Unobserved heterogeneity

- Parametric (gamma, normal)
- Nonparametric
- Mostly ignored in transportation field (but see Bhat, 1996 and Hensher, 1994)

Multiple Duration Process

More interesting and realistic

Independence among risks (Gilbert, 1992)

Competing risks model (Han and Hausman, 1991; Hensher, 1994)

Generalized multiple-durations model (Bhat, 1996)

Activity-Based Travel Demand Modeling Chandra Bhat

Limited-Dependent Variable Models

Discrete/Continuous (Barnard and Hensher, 1992; Bhat, 1996)

Discrete/Ordinal (Bhat, 1997)

Summary and Conclusions

The substantial progress can be traced to:

- Need for realistic representation
- Ability to provide micro-level demographic inputs
- Better tools for data storage/processing
- Advent of simulation techniques to approximate multi-dimensional integrals