Integrated Modelling in Europe with PROPOLIS

Kari Lautso, WSP LT Consultants, Helsinki Michael Wegener, Spiekermann & Wegener, Dortmund

Fourth Oregon Symposium on Integrated Land-Use Transport Models Portland, Oregon, 15-17 November 2005

PROPOLIS

PROPOLIS (2000-2004)

PROPOLIS (*P*lanning and *R*esearch of *Po*licies for *L*and Use and Transport for *I*ncreasing Urban *S*ustainability) was a project in the Key Action *City of Tomorrow and Cultural Heritage* of the 5th Framework Programme of the European Commission.

Partners

LT Consultants, Helsinki (Co-ordinator) Institute of Spatial Planning, Dortmund Spiekermann & Wegener, Dortmund University College London, London Marcial Echenique & Partners, Cambridge Trasporti e Territorio, Milan Marcial Echenique y Compañia, Bilbao STRATEC, Brussels

Objectives

The *objectives* of **PROPOLIS** were

- to *research*, *develop* and *test integrated land use and transport policies*, *tools* and comprehensive *assessment methodologies* ...
- in order to *define* sustainable long-term *urban strategies* and to *demonstrate their effects* in European cities.

What are the current trends -What do we try to achieve? What are the instruments to reach the goal?

Sustainability

In **PROPOLIS**, sustainable development consists of three interconnected components:

- ecological or environmental sustainability
- social or human sustainability
- economic efficiency

Sustainability

Indicators are used to measure the three dimensions of sustainability.

Conditions for selecting indicators:

- Relevance
- Policy sensitiveness
- **Predictability**, i.e. ability of each model to produce the indicator values
- Follow the impact chain

Sustainability Indicators

Environmental

Global climate change Air pollution Consumption of natural resources Environmental quality

Social

Health Equity Opportunities Accessibility and traffic

Economic

Total net benefit from transport

Environmental Indicators

Global climate change	Greenhouse gases from transport
Air pollution	Acidifying gases from transport Volatile organic compounds from transport
Natural resources	Consumption of mineral oil products Land coverage Need for additional new construction
Environmental quality	Fragmentation of open space Quality of open space

Social Indicators

Health	Exposure to PM from transport at housing Exposure to NO_2 at housing Exposure to traffic noise Traffic fatalities Traffic injuries
Equity	Justice of distribution of economic benefits Justice of exposure to PM Justice of exposure to NO_2 Justice of exposure to noise Segregation
Opportunities	Housing standard Vitality of city centre Vitality of surrounding region Productivity gain from land use
Accessibility and traffic	Total time spent in traffic LOS of public transport and slow modes Accessibility to city centre Accessibility to services Accessibility to open space

Economic Indicators

Total net benefit from transport

Transport investment costs Transport user benefits Transport operator benefits Government benefits from transport Transport external accident costs Transport external emissions costs Transport external greenhouse gases costs Transport external noise costs

Case Cities

PROPOLIS approach

PROPOLIS model system

Models in case cities

Brussels

Brussels RER

25

Brussels RER

26

Brussels RER: change in public transport share

27

Brussels RER: change in car-km

Brussels RER: change in greenhouse gas emissions

Helsinki

Helsinki: Car Operating Costs +75%

Helsinki: PT Fares -60%

Population

Employment

Helsinki: PT Fares -60% and land use restrictions

Population

Employment

Helsinki: Car costs +75%, PT speed + 5%, PT Fares -20%

Population

Employment

Dortmund

The Dortmund region

Zones and super zones

Population density

Employment density

Air pollution by transport

Traffic noise

Quality of open space

Walking accessibility to open space

Reference Scenario

Population (1970=100)

Percent population 0-4 years

Percent population 60+ years

Mean trip length (km)

Difference in traffic noise in Reference Scenario 2021 v. 2001

Policy Scenarios

Policy Scenarios (1)

000	Reference scenario
111-112	Local investment scenarios 111 Public transport investments 112 'Dortmund project'
211-219	Car operating costs 211 Car operating costs +25% 212 Car operating costs +50% 213 Car operating costs +100% 214 Car operating costs +75% 219 Car operating costs +300%
221-222	Parking costs 221 Parking costs +50% 222 Parking costs +100%
231-232	Cordon pricing 231 Cordon pricing 2 € 232 Cordon pricing 6 €

Policy Scenarios (2)

311-321	Speed limits 311 Maximum speed -10% on all roads 321 Maximum speed -20% on local roads
411-421	PT speed and fares 411 PT travel time -10% 412 PT travel time -5% 421 PT travel time -50%
511-541	Land use 511 Compact city scenario 521 Polycentric development 541 Urban growth boundary
711-719	Combination scenarios 711 Scenarios 214+421 712 Scenarios 214+412+421 713 Scenarios 214+412+421+521 719 Scenarios 219+412+421+541

Compact city scenario

Polycentric scenario

Urban growth boundary scenario

Scenario Comparison

Mean trip length (km)

Car ownership (cars per 1,000 population)

Car-km per capita per day

Percent car trips

CO₂ emissions by transport per capita per day (g)

Difference in traffic noise in Scenario 713 v. Reference Scenario in 2021

Synergies between Policies

Synergies

Synergies between policies occur if the total effect of all policies is larger or smaller than the total of the effects of the individual policies applied separately:

- **Positive synergies:** the policies reinforce each other.
- *Negative synergies:* the policies achieve the same objective by different means, i.e. are substitutable.

There are **positive** and **negative** synergies between **land use** and **transport** policies.

Synergies between land use and transport policies

	Difference to Reference Scenario in 2021 (%)						
	Trips	Trip length	% public	% car	Car-km	Cars	CO ₂
214 Car operating costs +75%	-2.78	-14.77	+6.49	-3.61	-20.98	-6.24	-18.89
412 Public transport travel time –5%	0.00	+0.02	+1.15	-0.06	-0.12	-0.05	-0.04
421 Public transport fares –50%	+0.75	+2.49	+11.84	-0.42	-0.68	+1.95	+1.62
521 Development at rail stations	+0.01	-1.43	+1.01	-0.01	-0.46	+0.01	-0.35
Total	-2.02	-13.69	+20.19	-4.10	-21.32	-4.33	-17.66
713 (214+412+421+521)	-1.93	-11.56	+27.45	-4.96	-23.28	-3.81	-17.61
Synergies	+0.09	+2.13	+7.26	-0.86	-1.96	+0.52	+0.05

Positive synergies

Negative synergies

Evaluation

Problems of evaluation of policies

- What are the **socio-economic footprints**?
- Conflicting short- and long-term effects
- Policy combinations accumulative or neutralising effects
- Mitigation of negative side effects
- **Conflicting goals** is there an optimum?

Economic evaluation

Economic evaluations are made in a special module

ECO	NOMIC INDICATORS									Home Page
		Total								Save Indicators
ETIC	Transport Investment Costs	-207								Background Var
ETUB	Transport User Benefits	-1264								
ETGG	External cost of Greenhouse Gases	0								
		Total	Passengers	Car	Bus	Rail	Slow	Goods		Car
ETOB	Transport Operator Benefits	-148	-148	-107	28	-69	0	0		Bus
ETGB	Government Benefits from Transport	1899	1898	1200	304	394	0	1	10-	
ETAC	External Costs of Accidents	-15	5	6	-1	-1	0	-19		
TOTAL		1736	1755	1099	331	324	0	-18		Slow
		Total	City centre	Inner urban	Outer urban	Rest of metropolitan	Rest of region, urbanised	Rest of region, rural		City centre
ETEC	External Emissions Costs	0	0	0	0	0	0	0		□ Outer urban
ETNC	External Costs of Noise	0	0	0	0	0	.0	0		□Rest of
TOTAL		0	0	0	0	0	0	0		
			2006	2011	2016	2021				
TGC Change in Transport Generalised Costs		-6%	-3%	-4%	-4%					
ELFP	ELFP Change of Floor Prices		2%	5%	6%	6%				TDT
ELPG Productivity Gain			2.3%	2.7%	2.7%	2.7%				

Overall assessment

The indicators are evaluated in the USE-IT module

70

Environmental evaluation

71

Social evaluation

Economic evaluation

There is an optimum for car pricing and PT fares

The Economic Index in different car pricing policies

The Economic Index in different public transport pricing policies

74

Sustainability indices in car pricing scenarios

Sustainability indices in public transport pricing scenarios

Environmental and Social Index in Reference Scenario

Scenario 212: car operating costs +50 % *

* Policy scenario in 2021 v. Reference scenario in 2021

Conclusions

Conclusions (1)

Without integrated urban land-use and transport planning the existing level of sustainability will *not* be maintained.

- Further growth in *income* will result in
- further *spatial decentralisation* of residences and workplaces,
- higher car ownership,
- more and longer trips,
- more *energy* consumption and *greenhouse gases*,
- more *traffic noise* and *air pollution*,
- less open space and natural habitats.

Conclusions (2)

Transport policies making *public transport* more attractive (i.e. faster or less expensive) have only *little* effect on car mobility.

However, they contribute to further spatial decentralisation of residences and workplaces.

Conclusions (3)

Land-use policies to increase urban density or mixed landuse or development near public transport stations *without* accompanying measures to make car travel less attractive have only *little effect* on car mobility.

However, these policies are important in the long run as they provide the necessary *preconditions* for a reduction of car mobility.

Conclusions (4)

Transport policies making *car travel* less attractive (more expensive or slower) are *very effective* in reducing car mobility and making cities more sustainable.

However, these policies depend on a *not too dispersed* spatial organisation.

Conclusions (5)

Policy packages combining policies making car travel less attractive **and** policies making public transport more attractive **and** land-use policies to increase urban density and mixed land use are **very effective** in achieving less car-dependent cities.

They may include:

- a combination of *pricing policies* directed at car users with moderate public transport fares,
- public transport infrastructure investments to improve public transport speed and service,
- a *land use plan* supporting living near central areas, in satellite cities or along public transport corridors.

Conclusions (6)

The goal of *simultaneously improving all dimensions* of sustainability was reached in most of the case cities using the same type of approach. This indicates that the approach could work in other *European* cities as well, and that the results could thus be transferable.

Conclusions (7)

For cities in other affluent regions, such as **North America** and **Australia**, the results can contribute to the discussion whether soft **pull** measures are sufficient to achieve sustainable cities or whether politically less acceptable **push** measures are also needed.

However, to give up their car-dependent way of life seems presently unacceptable to these countries ... but there are also positive developments..

Conclusions (8)

For the rapidly growing cities in *eastern Europe*, *Asia* and *Latin America*, the results can be seen as a warning not to repeat the costly mistakes European cities have made.

However, the speed of growth and inefficient governance structures often prevent the implementation of integrated land use and transport policies for sustainable cities.

More information:

PROPOLIS website:

www.wspgroup.fi/lt/propolis

PROPOLIS Final Report:

Lautso, K., Spiekermann, K., Wegener, M., Sheppard, I., Steadman, P., Martino, A., Domingo, R., Gayda, S.: *PROPOLIS – Planning and Research of Policies for Land Use and Transport for Increasing Urban Sustainability*. LT Consultants, Helsinki, 2004.

