

### Challenges to Using an Integrated Land-Use Transport Model in Australia

Professor Peter Stopher Institute of Transport and Logistics Studies The University of Sydney

November 2005

Oregon Integrated Models Symposium



## Outline

#### Introduction

- Overview of TRESIS
- State of Transport Modelling in Australia
- Efforts to introduce an integrated model
- Barriers
- Possible solutions
- > The future



## Introduction

Australia has five major urban areas undertaking modelling:

- > Sydney
- > Melbourne
- >Adelaide
- Brisbane
- Perth

In addition, the Bureau of Transport and Regional Economics (BTRE) undertakes national planning and modelling



## TRESIS

#### TRESIS – Transport and **Environmental Strategic Impact** Simulator – was developed at the ITLS in the 1990s and early 2000s Designed as a policy advisory tool Operates as an integrated model



### TRESIS

### > Deals with policies relating to:

- Land Use
- Transport
- Environment
- Regulatory policies
- TRESIS is a microsimulation package

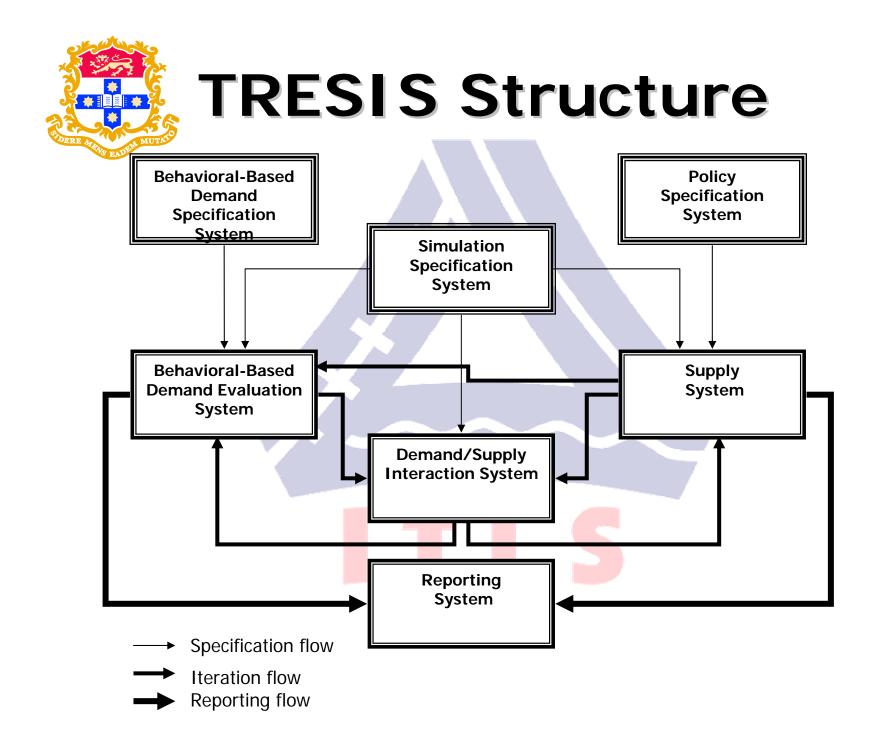


### TRESIS

TRESIS evaluates policies at a strategic level, and assesses a number of environmental impacts

TRESIS also outputs a substantial array of performance indicators




# **TRESIS in Outline**

- TRESIS works with simulated households and contains the following models (discrete choice)
  Household location and type of dwelling
  Work locations for household workers
  Number and type of vehicles owned by the household
  Levels of use of vehicles by trip purpose
  - > Means of travel by departure time



# **TRESIS in Outline**

- TRESIS has been applied in six Australian urban areas
- The latest version has recently been applied to a specific strategic level policy issue in Sydney
- TRESIS provides year-by-year forecasts for up to 28 years from the base year





- Simulation Specification System –user control of TRESIS procedures, including inputs, number of years to forecast, and discount factors for annual change
- Behavioural Demand Specification System – Constructs synthetic households and includes behavioural models of household choices



- Supply System Contains the transport network database, land-use zone database, auto technology and vehicle database, policy and environment factors
- Policy Specification System Allows a rich variety of policies to be input, including tolls, congestion pricing, gas guzzler taxes, etc.



- Behavioural Demand Evaluation System this takes the outputs of the behavioural demand and supply specification systems and derives the full set of choice probabilities for travel, location, and vehicles
- Demand/Supply Interaction System this controls or equilibrates the three different types of interactions between supply and demand
  - Travel time
  - Housing
  - > Automobiles



Reporting System – this is the system that provides a comprehensive set of outputs including:

- Performance indicators
- Environmental impacts
- Accessibility
- ≻Equity
- Household consumer surplus



# **Policy Options**

| SPECIFIC POLICY                       | ATTRIBUTES                                                                                                                    | SPECIFIC LOCATION<br>APPLICATION | TIMES OF<br>DAY |
|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-----------------|
| New/Existing PT                       | Frequency; Travel Time; Fare;<br>Access; Egress                                                                               | Origin-Destination               | 6               |
| New/Existing Roadway                  | Distance; Capacity; Auto Travel<br>Times: Congestion Pricing; Toll Cost                                                       | Origin-Destination               | 6               |
| Parking Charges                       | Dollars/hour                                                                                                                  | Destination                      | 6               |
| Urban Density                         | Houses, semi-detached,<br>apartment/flat; Prices                                                                              | Not Location Specific            | None            |
| Carbon Tax                            | Cents per kg                                                                                                                  | Not Location Specific            | None            |
| GST on New Vehicles                   | Dollars per vehicle (from 2000)                                                                                               | Not Location Specific            | None            |
| Automobile Technology                 | Mass (kg); Wholesale price;<br>Acceleration: Fuel efficiency                                                                  | Not Location Specific            | None            |
| Fuel Excise Tax by Fuel<br>Type       | Wholesale price of fuel; Excise<br>component of fuel price                                                                    | Not Location Specific            | None            |
| Maximum Ages for<br>Vehicle Scrappage | Maximum age to <mark>remov</mark> e high<br>emitters <mark>fro</mark> m spec <mark>ific</mark> vehic <mark>le c</mark> lasses | Not Location Specific            | None            |
| Vehicle Registration<br>Changes       | Dollars/year by vehicle class and type                                                                                        | Not Location Specific            | None            |
| Fuel Efficiency                       | Percentage of fuel efficiency of<br>current fleet                                                                             | Not Location Specific            | None            |
| Alternative Fuels – CNG               | 6 Classes (from class 11 to 16)                                                                                               | Not Location Specific            | None            |
| Vehicle Price Rebate/<br>Discounts    | Rebate on new vehicles                                                                                                        | Not Location Specific            | None            |



### Transport Modelling in Australia

- Each Capital City does its own modelling
- Models use various platforms, such as EMME/2, CUBE/VOYAGER, TransCAD
- Formal land use modelling is not undertaken in any of the major metro areas



### Transport Modelling in Australia

- Models are fairly sophisticated, using disaggregate models for destination and mode choice
- Victoria, New South Wales, and South Australia have significant staffs devoted to modelling activities
- Modelling has been underway for most areas since the 1970s



### Introducing TRESIS in Australia

- Little interest from Sydney, even though prototype was developed around Sydney data
  - >TPDC not looking for a new model
  - Unconvinced about the value of the land use component
  - Concern over whether it would produce different numbers for the same analysis than the existing software



# **TRESIS in Australia**

Purchased by South Australia

- Requires a lot of support to run
- >Input data created problems
- Interpretation was unfamiliar to local agency staff
- Lacks some of the land use data needed for validation



# **TRESIS in Australia**

#### **>BTRE also obtained a copy**

- Used to investigate a range of policies relating to greenhouse gas emissions
- Outside this, BTRE is not generally in the business of running LUTP models
- Used most recently in a study of bridge/tunnel options



### **Barriers to Use**

#### First issue is cost

- Second issue TRESIS is not readily self-calibrated, but needs expert assistance
- Third issue is input data requirements and validation requirements
- Fourth issue is comparability to prior model estimates



### **Barriers to Use**

- Fifth issue tends to be more of a "black box"
- Sixth issue is the lack of training with such models among agency staffs
- Seventh issue is that the models are still largely seen as a curiosity – not a serious alternative to standard methods



Cost is unlikely to be easily resolved, but payoff must be clearly demonstrated

Need to pay a lot of attention to validation steps, and to validating each individual module

Model validation has tended to be done traditionally only at the end of the four-step process – not a good option



- Need to improve data collection techniques
  - Errors in self-report, diary-based surveys
  - Problems of increasing nonresponse levels
  - Respondent burden as more information is needed



Comparability is unlikely to be solved and should not be if previous models were wrong

Demonstrable benefits from changing to new software

>More accuracy in forecasts

- >Better responsiveness to policy options
- Ability to handle questions not handled by existing models
- ≻Etc.



>Make models more transparent

- Simplify user interface
- Provide good tutorials for use of the model system
- Demonstrate what happens when inputs are changed
- Teach integrated models to graduate students!!



### **The Future**

- Integrated models are the way to go
- Should be developed to work with a tour-based or activity modelling process
- Only way to get realistic estimates of induced travel and land use changes
- ≻But...



### **The Future**

- Need to be developed initially to address specific planning and policy issues
- Need to be demonstrably much better than anything in current use
- Need to establish the "business case" for switching