Transitional Model – Transportation Models

#### Fourth Oregon Symposium on Integrating Land-use & Transportation Models

November 15-17, 2005

## Today's presentation

- Changes in transport models required due to transitional model structure
- PT Application framework
- PT Calibration status
- CT Update Rick
- Next steps



## **Transport Model Description**

- "First generation" activity model
  - Explicit day-pattern generation 'hwshrh'
  - Hazard-based duration models
  - Nested destination & mode choice models
  - Micro-simulation application paradigm





#### Gen2 Model Specification

- Household Allocation (HA) model to simultaneously predict household residential location and workplace location
- Transitional Model Specification
  - Workplace location choice within Person Travel (PT) component



- Goals:
  - Predict workplace for every worker in population
  - Integrate model with aggregate labor flows from Production Interaction (PI) component
  - Consider all relevant mode and worker characteristics in impedance terms



#### Matrix Expansion Process

- Expand beta zone data to alpha zone data and convert to probability matrix for destination choice sampling
- Work location choice probabilities vary by:
  - Occupation
  - Market segment (3 income classes, 3 auto sufficiency classes)
  - Residential location (alpha zone)



# Alpha zone & Beta zone system



PI works at beta (aggregate) zone level

PT works at alpha (small) zone level



Fourth Oregon Symposium on Integrating Land-Use and Transport Models – November 15-17, 2005





## Matrix Expansion Process





Distributed Application Framework (DAF)

- DAF provides a way to distribute tasks among multiple processors and computers
- Uses ethernet connection to send 'messages' to 'workers' to accomplish 'tasks'
- Each worker is a java virtual machine (program) running on a processor





#### Model Application – Create Aggregate Mode Choice Logsums



teriti

## **PT Application Process**





## PT Calibration

|                                                                                                   | Tours Pe | Pattern   |  |                         | Activities p | er Pattern |
|---------------------------------------------------------------------------------------------------|----------|-----------|--|-------------------------|--------------|------------|
| Number of<br>Tours                                                                                | Observed | Estimated |  | Number of<br>Activities | Observed     | Estimated  |
| 0                                                                                                 | 12%      | 10%       |  | 1                       | 12%          | 9%         |
| 1                                                                                                 | 48%      | 45%       |  | 3                       | 19%          | 14%        |
| 2                                                                                                 | 32%      | 35%       |  | 4                       | 19%          | 23%        |
| 3                                                                                                 | 7%       | 9%        |  | 5                       | 17%          | 18%        |
| 4                                                                                                 | 1%       | 1%        |  | 6                       | 15%          | 16%        |
| 5                                                                                                 | 0%       | 0%        |  | 7                       | 11%          | 12%        |
| 6                                                                                                 | 0%       | 0%        |  | 8                       | 4%           | 6%         |
| 7                                                                                                 | 0%       | 0%        |  | 9                       | 1%           | 2%         |
| 8+                                                                                                | 0%       | 0%        |  | 10+                     | 0%           | 0%         |
| Total                                                                                             | 100%     | 100%      |  | Total                   | 100%         | 100%       |
| Fourth Oregon Symposium on Integrating Land-Use and Transport 15<br>Models – November 15-17, 2005 |          |           |  |                         |              |            |



|            | Tours By |           |     |
|------------|----------|-----------|-----|
| Purpose    | Observed | Estimated | Pui |
| Work       | 25%      | 29%       | Wo  |
| College    | 1%       | 2%        | Col |
| K-12       | 13%      | 12%       | K-1 |
| Shop       | 18%      | 16%       | Sho |
| Social/Rec | 18%      | 18%       | Soc |
| Other      | 20%      | 18%       | Oth |
| Work-Based | 5%       | 5%        | Wo  |
| Total      | 100%     | 100%      | Tot |

|            | Average Trip Rate per<br>Tour By Purpose |           |  |
|------------|------------------------------------------|-----------|--|
| Purpose    | Observed                                 | Estimated |  |
| Work       | 1.64                                     | 1.81      |  |
| College    | -                                        | -         |  |
| K-12       | 2.70                                     | 3.04      |  |
| Shop       | 2.59                                     | 2.94      |  |
| Soc/Rec    | 2.36                                     | 2.43      |  |
| Other      | 1.70                                     | 1.57      |  |
| Work-Based | 1.30                                     | 1.20      |  |
| Total      | 2.19                                     | 2.30      |  |



## PT Calibration – Depart Hour





theroJdq



Frequency Plot of Total Total PT Tours vs. Targets





18







Fourth Oregon Symposium on Integrating Land-Use and Transport Models – November 15-17, 2005





pbCorsult

## Commercial Transport (CT)

- Use production and consumption flows (annual \$) to depict origins and destinations by commodity
- Use a microsimulation process to generate discrete shipments of tours
- Capture important dynamics:
  - Trans-shipment
  - Trip chaining
- Package those tours for network assignment
- Resemble reality







## **CT Validation Targets**

For each commodity:

| Measure                                         | Target Outcome             |  |
|-------------------------------------------------|----------------------------|--|
| Conserves intersector flows from PI             | Verification,<br>In-sample |  |
| Match observed mode shares                      |                            |  |
| Match average trip distance                     |                            |  |
| Matches percent of trips for trans-<br>shipment | validation                 |  |
| Distribution of carrier type                    |                            |  |
| Distribution of vehicle type                    |                            |  |
| Matches payload weight distribution             |                            |  |
| Matches Portland control totals                 | Out-of-type validation     |  |
| Matches observed daily truck counts             |                            |  |



## CT Observed vs. simulated trip lengths





Fourth Oregon Symposium on Integrating Land-Use and Transport Models – November 15-17, 2005

#### CT Predicted vs. estimated flows





Fourth Oregon Symposium on Integrating Land-Use and Transport Models – November 15-17, 2005

## Transport Supply (TS)

- Frank-Wolfe equilibrium capacity restraint highway assignment
- Multi-class assignment
- Strategic (Emme2) transit assignment
- Portland volume-delay functions



## **Conclusions & Next Steps**

- Calibration is on-going but encouraging
  - May require additional segmentation for duration models, or replacement with logit framework and available time windows
  - Use CTPP date for work tour calibration
- Longer Term Enhancements
  - Move long-term decisions back to HA
  - Generalization or sampling of pattern types
  - Model long-distance travel (data!!)
  - Enhance reporting/visualization features

