

Fourth Oregon Symposium on Integrating Land Use and Transportation Models

A Retrospective on TLUMIP

Rick Donnelly, *PB Consult Inc.* rdonnelly@pbconsult.com

15 November 2006

First opinion

"Well, it's certainly intriguing. But it seems incredibly risky, even by your standards."

Gordon Shunk's reaction to original TLUMIP ideas, July 1996

Client perspective

Why?

- Model methods (outside Portland Metro area) were very outdated
- Could not meet new state and federal mandates
- Could not provide needed information
- Losing ability to effectively participate in decisionmaking process

Evolving towards integration

Initial impetus

Issue	State- wide	Sub- state	Urban
Effect o <mark>f land supply</mark> on land use and location decisions			
Effect of congestion on land use and location decisions			
Cumulative effects of retail location choice			
Effects of large commercial developments at UGB periphery			
Effect of land supply on travel behavior			
Effect of highway capacity increases on travel behavior			
Effect of network connectivity on travel behavior			
Effect of parking supply on travel behavior			
Effect of urban form on mode choice			
Effect of rail investment on highway use			
Effect of changes in the demographic composition of Oregon			

The first generation models

- Economic Model determines growth of state economy
- Location Models allocate production and transactions
- Transport Models estimate demand and allocate trips to routes
- Model components are linked in space and time

Impetus for second generation models

- Build on lessons learned in Gen1 development
- Establish fully integrated statewide model
 - Explicit representation of economy, land use, and transport
 - Linkages to environmental analyses and performance indicators
- Fit into OMIP framework
- Systems thinking approach
- Appropriate scale

Evolving technologies

GIS

- Distributed computing
- Remote sensing data
- Experience elsewhere
 - European models
 - TRANSIMS
 - Activity-based travel models
- Anticipated emphasis on sustainability

Gen2 requirements

- Operate at a single geographic scale (TAZ within urban areas, Census tracts outside?)
- Transport, land use, and economic models to be fully integrated
- Model should be fully dynamic
- Hybrid structure
 - Equilibrium for economic and transport markets
 - Disequilibrium for land markets and activity interactions
- Activity-based travel model
- Affordable data requirements, both for development and application

Model structure

- Economic and demographic (ED)
- Production allocation and activity interaction (PI)
- Household allocation (HA)
- Land development (LD)
- Person travel (PT)
- Commercial travel (CT)
- Transportation supply (TS)
- Utilities

Appeal of microsimulation

- Flexibility in aggregation
- Shift burden from wetware to hardware
 - Increased computational burden
 - Reduced model complexity
- Permit more complete accounting
- Facilitate explicit treatment of influences
 - Non-linearities
 - Finer resolution behavioral, spatial, temporal...
 - Higher fidelity
 - Enable sensitivity variation as source of dispersion

Implementation view

and visualization

Outreach

- Peer review
- OMSC ← staff & technology sharing
- Partnering
- Biannual symposia
- Publications
 - Traditional outlets (TRB, IATBR, etc.)
 - Web portal & electronic publishing
 - TMIP
- Open source software
- University collaboration

Peer Review Panel

Julie Dunbar North Central Texas Council of Governments → Dunbar Consulting

Keith Lawton Portland Metro \rightarrow Keith Lawton Consulting

Kim Fisher Transportation Research Board

Gordon Shunk Texas Transportation Institute

Robert Gorman Federal Highway Administration

David Simmonds David Simmonds Consultancy (UK)

Frank Koppelman Northwestern University

Michael Wegener University of Dortmund → Spiekermann &Wegener (DE)

Outreach

- Peer review
- OMSC ← staff & technology sharing
- Partnering
- Biannual symposia
- Publications
 - Traditional outlets (TRB, IATBR, etc.)
 - Web portal & electronic publishing
 - TMIP
- Open source software
- University collaboration

What's been done?

- Long-range design
- Proof of concept
- Foundational work
 - Data
 - Software
 - Hardware
 - Wetware
- Successful applications
- Peer review

Resource allocation

What remains to be done?

Revisit analytical context

Analytical context

Original issues

- Land supply on land use and location decisions
- Congestion on land use and location decisions
- Cumulative effects of retail location choice
- Large commercial developments at UGB periphery
- Land supply
- Highway capacity increases
- Network connectivity
- Parking supply
- Urban form and mode choice
- Rail investment and highway use
- Changes in the demographic composition of Oregon

Emerging issues

- Market connectivity
- Job creation and maintenance
- Changes in Oregon's economic structure
- Commodity flow
- Fuel prices
- Induced travel demand

What remains to be done?

- Revisit analytical context
- Second generation models
 - Development
 - Applications
- Urban-statewide integration
- Stronger university ties
- Implementation
 - Business practice
 - Staff development
 - Bear hug

Symposium program

Today

- Where we've been and where we're going
- How integrated models have influenced decision-making

Tomorrow

- Progress in TLUMIP model development
- Noteworthy advances elsewhere

Thursday

Microsimulating employment and firms