
TABLE 5.-Admission rates (per 100 infants) by diagnosis, birth 
weight, and maternal smoking. 

Birth weight (g) 
Total 

Diagnosis 

Bronchitis and 
pneumonia 
All other 
Total 

<2,999 3.oos3.499 

s NS S ss 
(297) (GW (415) (4,098) 

19.2 12.3 9.6 8.2 
22.6 19.9 14.5 14.6 
41.8 32.2 24.1 22.8 

3,500+ (including unknown) 

S NS S NS 
@w (3.195) (986) WJW 

12.1 9.0 13.1 9.5 
15.2 13.3 16.9 15.5 
n.3 22.3 30.0 24.9 

NOTE. - S-Smokers; NS-Nonsmokers Absolute numbers in parentheses 
SOURCE: Harlap and D&e(U). 

which may exist between smoking and factors such as parental neglect 
or socioeconomic class. In addition, hospital admission rates may not he 
an accurate index of infant morbidity. 

Colley, et al. (22) and Leeder, et al. (~4) studied the incidence of 
pneumonia and bronchitis in 2,205 children over the first 5 years of life 
in relation to the smoking habits of both parents. They found that a 
relationship between parental smoking habits and respiratory infection 
in children occurred only during the first year of life (Table 6). They 
also showed a relationship between parental cough and phlegm 
production and infant infection (Table 6) which was found to be 
independent of the effect of parental smoking habits. The relationship 
between parental smoking and infant infection was greater when both 
parents smoked and increased with increasing number of cigarettes 
smoked per day. The relationship persisted after controlling for social 
class and birth weight. 

Thus, respiratory infections during the first year of life are related 
to parental smoking habits independently of parental symptoms, social 
class, and birth weight. Because of the dose-response relationship 
between parental smoking and infant respiratory infection established 
by Colley, et al. (29, it is reasonable to suspect that cigarette smoke in 
the atmosphere of the home may be the cause of these infections; 
however, other factors such as parental neglect may also play a role. 

Summary 

1. Tobacco smoke can be a significant source of atmospheric 
pollution in enclosed areas. Occasionally, under conditions of heavy 
smoking and poor ventilation, the maximum limit for an g-hour work 
exposure to carbon monoxide (50 ppm) may be exceeded. The upper 
limit for CO in ambient air (9 ppm) may be exceeded even in cases 
where ventilation is adequate. For an individual located close to a 
cigarette that is being smoked by someone else, the pollution exposure 
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TABLE C.-Pneumonia and bronchitis in the first 5 years of life, 
by parents’ smoking habit and morning phlegm. 

Annual incidence of pneumonia and bronchitis per 100 children 
(Absolute numbers in parentheses) 

Year of 
Both ex-smokers 

followup Both nonsmokers One smoker Both smokers or one er-smoker 
or smoking habit 

All 

changed 

N O/B N O/B N O/B N O/B N O/B 

1 7.6 
(W 

2 8.1 
W) 

3 6.9 
(305) 

4 8.0 
WV 

5 6.7 
w-f4 

10.3 10.4 14.8 15.3 
(-a (‘w wm VW 
8.3 7.1 15.5 8.7 

(3s) (365) WJ) (286) 
8.1 10.5 9.4 7.9 

(37) wa W) (242) 
11.1 7.5 10.8 7.6 
W) 6-3 wa cw 
14.7 5.6 9.4 3.9 
@‘f) WV VW em 

23.0 
uw 

9.2 
(1-W 

11.0 
W) 

11.6 
wu 

10.6 
(132) 

8.2 
(546) 

6.5 
m9 

8.2 
NW 

8.2 
WV 

6.4 
(737) 

13.2 10.1 
w4 (v=) 

10.7 7.4 
(159) (1,572) 

11.6 
(173) (1,:; 

9.1 7.9 
(187) (1.524) 

7.3 5.9 
(219) (1,497) 

NOTE.-N- neither with winter morning phlegm; O/B-one or both with winter morning phlegm. 
SOURCE: Colley. J.R.T. (PP). 

16.1 
W) 
11.3 

(476) 
10.6 

(471) 
10.3 

ww 
9.1 

WV 

may be greater than would be expected from atmospheric measure- 
ments. 

2. Carbon monoxide, at levels occasionally found in cigarette smoke- 
filled environments, has been shown to produce slight deterioration in 
some tests of psychomotor performance, especially attentiveness and 
cognitive function. It is unclear whether these levels impair complex 
psychomotor activities such as driving a car. The effects produced by 
CO may become important when added to factors such as fatigue and 
alcohol which are known to have an effect on the ability to operate a 
motor vehicle. 

3. Unrestricted smoking on buses and planes is reported to be 
annoying to the majority of nonsmoking passengers, even under 
conditions of adequate ventilation. 

4. Children of parents who smoke are more likely to have bronchitis 
and pneumonia during the first year of life, and this may be due to 
their being exposed to cigarette smoke in the atmosphere. 

5. Levels of carbon monoxide which can be reached in cigarette 
smoke-filled environments have been shown to decrease the exercise 
duration required to induce angina pectoris in patients with coronary 
artery disease. These levels of CO also have been shown to reduce the 
exercise time until onset of dyspnea in patients with hypoxic chronic 
lung disease. 
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Recommendations 

There has been a long-term research interest in the health effects of 
voluntary smoking, and substantial relevant data have accumulated. 
Attention to involuntary smoking is of recent vintage, and only limited 
information regarding the health effects of such exposure upon the 
nonsmoker is available. Therefore, research is needed to define these 
effects. 

The initial research priorities with respect to involuntary smoking 
should be focused on those populations which might be considered at 
particular risk of negative health effects based on the information now 
available; namely, children, patients with coronary artery disease, 
patients with hyperactive airways, and patients with chronic lung 
diseases. In addition, the potential effects of involuntary smoking on 
psychomotor performance merit priority attention because of their 
possible importance in certain circumstances (e.g., driving). More 
specifically: 

1. Prospective studies are needed to define the relationship between 
parental smoking and the prevalence of respiratory illness and 
symptoms and pulmonary function status in children. Care should be 
taken to consider such confounding factors as socioeconomic status and 
the smoking habits of the children. 

2. Further in-depth studies are needed on patients with demonstra- 
ble coronary artery disease to assess the effects of carefully-defined 
carbon monoxide and involuntary smoking exposures upon angina and 
other indicators of myocardial ischemia and performance. 

3. The clinical (symptomatic) and physiologic responses to involun- 
tary smoking exposure should be investigated in patients with 
demonstrably hyperactive airways (“asthmatics”) and chronic lung 
diseases. 
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Metabolism 

Most drugs are metabolized in the liver, and metabolizing enzymes can 
occur in the soluble, mitochondrial, or microsomal fractions. The most 
common routes of drug metabolism involve oxidation, reduction, 
hydrolysis, and conjugation (34). 

Mechanisms of Tobacco-Drug Interactions 
Cigarette smoke is a complex mixture of noxious materials. Only a few 
of its components have been studied with respect to modifying drug 
disposition in animal, tissue, or enzyme systems. In this regard, 
polycyclic aromatic hydrocarbons (PAHs), nicotine, cadmium, and some 
pesticides have been reported to be enzyme inducers, and carbon 
monoxide (CO), nicotine, cadmium, some pesticides, hydrogen cyanide, 
and acrolein have been reported to be enzyme inhibitors (23). 

The buccal and pulmonary bioavailability of most inhaled materials 
in cigarette smoke is relatively high. Dalhamn, et al. (9) found 86 to 99 
percent retention of several components of cigarette smoke (acetalde- 
hyde, isoprene, acetone, acetonitrile, toluene, and particulate matter) 
while CO absorption was only 54 percent. Mitchell (38) determined that 
appreciable retention of cigarette smoke occurs regardless of depth of 
inhalation. There was a mean retention of 37 percent of smoke in the 
buccal cavity, 82 percent during short inhalation (5 WC), and 97 percent 
during long inhalation (30 set). 

Aryl Hydrocarbon Hydroxylase 

Aryl hydrocarbon hydroxylase (AHH), sometimes referred to as 
benzpyrene hydroxylase, is a mixed-function oxidase enzyme found in 
human and animal tissues. An extensive literature and many reviews 
cover the subject (5, 13, 49). AHH activity in many tissues is increased 
markedly by a variety of foreign compounds present in tobacco smoke, 
including most of the PAHs. Many carcinogens are biotransformed by 
AHH into reactive intermediates, such as epoxides, which can elicit cell 
transformation, mutagenicity, and cytotoxicity. 

Inducers of microsomal oxidase enzymes can be classified according 
to their effects on various components of the enzyme system. The 
simplest categorization includes phenobarbital and many other drugs 
as stimulators of cytochrome P-450, while methylcholanthrene and 
PAHs produce an increase of a modified form of cytochrome P-450, 
namely cytochrome P-448 or cytochrome P&50. A summary of the 
primary biochemical and pharmacological differences between the two 
main classes of inducers is provided in Table 1. Steroids form a third 
group of compounds that can induce liver microsomal enzyme activity 
under certain conditions. These data, derived entirely from animal 
systems, led the authors to expect that, to the degree to which PAH 
constitutes the main enzyme inducer in cigarette smoke, only some 
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TABLE L-Differences between hepatic effect of phenobarbital 
and polycyclic hydrocarbons 

Characteristic Phenobarbital Polycyclic aromatic 
hydrocarbons 

onset of effects 
Time of maximum effect 
Liver enlargement 
Pmtein synthesis 
Phospbolipid synthesis 
Liver blood flow 
Ligaadin content 
Mary flow 
Enzyme components 

Cyt.ochmme P-450 
Cytwhmme P-448 
NADPHrcytochmme 

c reductase 
Substrate specificity 

N-Demethylation of ethyl- 
morphine and meperidine 

N-Demethylatioa of Imethyl. 
4-methyl-aminobenzene 

Aliphatic hydmxylation of 
hexobarbital and 
pentobarbital 

Aromatic hydmxylation of 
knzo(a)pyre~ ad 
zoxamlamine 

PHydroxylation of biphenyl 
2-Hydmxylation of bipbenyl 
Dehaloganation of halothane 
Glucumnidation of biliibin 
Sulfoxidation of 

chlorpmmaaine 

bl2hr 
Mhr 
Marked 
Large increase 
Marked increase 
Incwase 
In- 
Increase 

Increase 
No effect 

1IlCDS.W 

Increase 

Increase 

Inmse 
Incmaxe 
Slight increase 
Increase 
Increeae 

Mhr 
24hr 
Slight 
Small increase 
No effect 
No effect 
Slight increase 
No effect 

No effect 
IIICM 

No effwt 

No effect 

No effwt 

Increase 
No effect 
Incma3e 

No effect 

SOURCE: Julko. W. (OX). 

drug disposition pathways will be modified by use of tobacco. Unlike 
phenobarbital, which affects diverse aspects of liver function, includ- 
ing blood and biliary flow, the actions of PAHs seem to be limited to 
the induction of selected drug-metabolizing enzymes (5, 13, 27, 28, 4.2, 
49). 

Studies with human tissues demonstrate a correlation between 
cigarette smoking, increased AHH activity, and enhanced biotransfor- 
mation of numerous-but selected-drugs that share both the P-450 
and P-448 mixed-function oxidase pathways. Kapitulnik, et al. (25) 
found strong correlations between AHH activity in autopsied human 
livers and the metabolism rates of drugs, including hydroxylation of 
antipyrine, hexobarbital, and zoxazolamine. The hydroxylation of 
coumarin and the Odealkylation of 7ethoxycoumarin correlated more 
poorly. Nebert, et al. ($1) and Welch, et al. (65) found significantly 
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higher levels of placental AHH in women with a history of cigarette 
smoking. The latter investigators also found an increase in aminoazo 
dye Ndemethylase activity in placentas from smokers. Placental 
iissues show an excellent correlation between zoxazolamine and 
benzo(a)pyrene (BP) hydroxylation. The largest activities were found 
in cigarette smokers (24), although the stimulation of Odealkylation of 
i-ethoxycoumarin was less marked while oxidative aromatization (by 
&eroid hydroxylase) of Ad-androstene3,17dione to estradiol and 
sstrone was not affected. Much of these data show various degrees of 
correlation of drug and AHH activity and reflect the presence of 
icveral distinct monooxygenase systems. 

Other than liver, human tissues which metabolize benzo(a)pyrene 
Include lung, skin, lymphocytes, and some fetal tissues (51). The 
presence of inducible AHH activity in almost every animal tissue 
indicates the ubiquitous distribution of this enzyme (50). The liver is 
the most active tissue per unit weight in hydroxylating BP. Futher- 
more, its large size and blood flow, relative to other organs, make it the 
most dominant and important organ in BP-induced drug metabolism. 
Thus, most changes in drug biotransformation in response to smoking 
are presumed to occur in the liver. Welch, et al. (64, 66) were able to 
rule out much of an effect of intestinal metabolism in the enhanced 
first-pass metabolism of phenacetin. However, the potential for 
slteration of drug disposition via induction of drug metabolism in other 
major perfusion sites such as the kidney should not be ignored. Several 
animal studies have shown that PAHs are effective inducers of renal 
.Jrug metabolism in rats and rabbits (21,63). 

The data obtained from animal systems reflecting the physiological 
and substrate specificity of PAH induction somewhat parallel the role 
of cigarette smoking in altering drug disposition in man. The selective 
increase in aliphatic hydroxylation of various drugs in smokers 
(antipyrine, pentazocine), which does not occur in animals, may either 
reflect species differences or be caused by the myriad other compounds 
in smoke capable of inducing oxidative enzymes. Alternatively, a rate- 
limiting process other than enzymatic activity (protein binding, blood 
flow) may control disposition of these drugs. For example, the rate of 
aromatic hydroxylation of phenytoin is saturable and is appreciably 
dependent on diffusion of free drug from plasma in man, while animals 
generally form different ring-hydroxylated metabolites and exhibit 
product inhibition in overall biotransformation of the metabolite (22). 

The absence of an effect of smoking on liver size appears to be 
common in man and animals. Lewis, et al. (30) examined body organ 
weights in relation to smoking habits in 172 autopsied subjects. Mean 
liver weights were 1111 g/mzbsa in male nonsmokers versus 980 
g/mzbsa in heavy smokers. On the other hand, the nonsmokers tended 
to have lighter kidneys and lungs than the smokers. 
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Mic~rosomal Enzyme Systems Which Catalyze Drug Metabolism 

Mueller and M iller (39, 40) first described the metabolism of a foreign 
compound by hepatic m icrosomes. They showed that the m icrosomal 
fraction of a liver homogenate catalyzed both the reductive splitting of 
the azo linkage and the oxidative N-demethylation of aminoazo dyes. 
The reactions required nicotinamide-adenine dinucleotide phosphate 
(NADP), nicotinamide-adenine dinucleotide (NAD), and molecular 
oxygen. A wide variety of oxidative reactions are known to occur in 
m icrosomes: deamination, 0-, N-, and S-dealkylation, expoxidation, 
hydroxylation of alkyl and aryl hydrocarbons, formation of alkyl 
derivatives, N-hydroxylation, N- and S-oxidation and dehalogenation. 
Azo- and nitro-reductase activities are also found in hepatic m icro- 
somes. The reactions are visualized more simply as different kinds of 
hydroxylation reactions (3, 14, 16): aromatic hydroxylation, aliphatic 
hydroxylation, N-dealkylation, Odealkylation, deamination, sulfoxida- 
tion, and N-oxidation. (See Mannering (35) for a thorough discussion of 
the m icrosomal enzyme systems which catalyze drug metabolism.) 

Drug Metabolizing Systems of the Heputic Enobplasmic Reticulum 

The m icrosomal drug metabolizing system is thought of as a m ixed 
function oxidase mechanism whereby nicotinamide-adenine dinucleo- 
tide phosphate reductase (NADPH) reduces a component in m icro- 
somes which then reacts with molecular oxygen to form an “active 
oxygen” intermediate. The “active oxygen” is then transferred to the 
drug. Gillette (15) formulated the overall reaction as follows: 

1. NADPH + A + H++ AHz+ NADP’ 
2. AH2+ OF+ “active oxygen” 
3. “Active oxygen” + drug -+ oxidized drug + A + Hz0 
In sum: NADPH + OZ+ drug = NADP+ + Hz+ oxidized drug. 
Key enzymes in the overall reactions are nicotinamide-adenine 

dinucleotide phosphate reductase (NADPH)-cytochrome C reductase, 
the flavin enzyme involved in the oxidation of NADPH, cytochrome P- 
450, which in its reduced form is generally considered to be A, and 
NADPH cytochrome P-450 reductase, which functions in the reduction 
of oxidized cytochrome P-450. 

This mechanism requires that equivalent amounts of NADPH, 
oxygen, and substrate be utilized in the reaction. Stoichiometric 
relationships have been obtained for the hydroxylation of phenylala- 
nine by hepatic m icrosomes (26) and the hydroxylation of 17-hydroxy- 
progesterone by adrenal m icrosomes (8). Trimethylamine has been 
reported to stimulate NADPH oxidation by an amount equivalent to 
the amount of trimethylamine oxide formed (2), and hexobarbital was 
found to increase NADPH oxidation in accordance with stoichiometric 
expectations (62). However, in several studies (14, 15, 16, Jr) Gillette 
and coworkers found that some drugs had no effect on NADPH 
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Dxidation, whereas others had more of an effect than could -be 
accounted for by the metabolism of the drug. Microsomes contain 
enzymes which oxidize NADPH and utilize molecular oxygen in the 
absence of drugs, greatly complicating the analysis. Whether or not a 
drug stimulates or depresses NADPH oxidation would seem to depend 
upon whether or not it stimulates or depresses cytochrome P-450 
reductase activity; this, in turn, would seem to depend upon whether 
the drug combines with cytochrome P-450 as a type I or as a type II 
compound (17, 18, 19) as discussed below. Ernster and Orrenius (10) 
demonstrated a 1:l:l stoichiometry of oxygen utilization, NADPH 
lisappearances, and formaldehyde formation from the oxidative 
demethylation of aminopyrine. However, Estabrook and Cohen (II) 
found that stoichiometry did not support the basic assumption of a 
mixed function oxidase reaction, that a mole of NADPH be oxidized 
for each mole of formaldehyde formed; two moles of nicotine-adenine 
dinucleotide phosphate (NADP) were formed per -mole of formalde- 
hyde, suggesting that the reaction is more complex than anticipated. 
&same, as cited in Mannering (37), did not find a stoichiometric 
relationship between NADPH and hexobarbital oxidation; the amount 
of NADPH oxidized was about 50 percent greater than the amount of 
hexobarbital metabolized. 

Figure 1 shows the electron transfer system involving cytochrome P- 
150 as conceived by Omura, et al. .(49,48). 

The first description of the microsomal system responsible for drug 
metabolism (39, 40) included a role of nicotinamide-adenine dinucleo- 
tide reductase (NADH) as well as NADPH. From time to time since 
then, NADH has been implicated in reactions involving drug metabo- 
lism (6, 42, 62). Using the mechanism of peroxidase action as a model, 
Estabrook and Cohen (11) suggested a way in which NADH. might 
contribute to the reaction (Figure 2). NADPH may serve as an electron 
donor, via a respiratory chain, direct to cytochrome P-450 with an 
associated branched pathway to cytochrome bs, the only cytochrome 
other than cytocbrome P-450 found in microsomes. In this way, 
cytochrome bs might serve as a second electron donor to cytochrome P- 
450 and thus satisfy the requirement of two electrons for the overall 
reaction. 

Sih and coworkers (57,58) question the function of NADPH as solely 
to provide the reducing equivalents for cytochrome P-450 via the 
electron transfer system as shown in Figure 1. Mannering (35) 
discusses the three lines of evidence leading to the scheme given in 
Figure 3, which visualizes a dual role of NADPH in the oxidation of 
corticosteroids by mitochondria of the adrenal cortex. 

Much of the speculation regarding the components of the microsom- 
al drug metabolizing system existed because attempts to solubilize 
cytochrome P-450 in active form had failed, and it was necessary to 
employ crude microsomal preparations. In various studies (7, 31,32, 33) 
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FIGURE I.-Proposed electron transfer system employed in the 
microaomal metabolism of drugs. Fp =flavoprotein (in the liver, 
cytochrome C reductase; in the adrenal, adrenodoxin reductase); 
NHIP = non-heme iron protein (in the adrenal, adrenodoxin) 

SOURCE: Omura, T. (43.48). 

Coon and Lu and their associates did much toward solving this 
problem. 

Solubilization of hepatic microsomes from the rabbit with a mixture 
of glycerol, dithiothreitol, and sodium deoxycholate in a potassium 
citrate buffer produced an extract which was resolved into a fraction 
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FIGURE 2.-Scheme showing how NADH and cytochrome b5 might 
contribute to the electron transfer system employed in the microsomal 
metabolism of drugs 

containing cytochrome P-450, a fraction containing a NADPH 
reductase, and a fat soluble, heat stable fraction. All three fractions 
were necessary for the maximal oxidation of drugs (benzphetamine, 
aminopyrine, ethylmorphine, hexobarbital, nor-codeine, pnitroanisole) 
or for the o-hydroxylation of lurate. The criterion for the solubilization 
of cytochrome P-450 was that it remained in the supernatant fraction 
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FIGURE 3.--Scheme illustrating a proposed dual role of NADPH in 
the oxidation of corticosteroids by mitochondria on the adrenal 
cortex. FP = flavoprotein (adrenodoxin); NHIP = non-heme iron 
protein (adrenodoxin reductase) 

SOURCE: Sih, C. (57.58) 

of the preparation after centrifugation at 105,000 x g for 2 hours. 
These fractions may provide the opportunity for purification and 
identification of the components of the system. 

Both NADH and NADPH can act as the electron donor in the 
reduction of nitro compounds. The reaction is presumed to proceed to 
the primary amine through the formation of nitroso and hydroxyl- 
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FIGURE I.--Scheme showing how the microsomal elktron transfer 
system might function in both the oxidation and reduction of drugs 

SOURCE: Gillette. J.R (19). 

amine derivates. Nitroreductase is active only under anaerobic 
conditions. Sensitivity to oxygen may be due in part to the auto- 
oxidation of the hydroxylamine intermediate (19). In studies which 
employed p-nitrobenzoate as a substrate, Gillette, et al. (19) concluded 
that the reduction was mediated by cytochrome P-450. These 
investigators proposed an electron transport system which would 
explain both the oxidative and the reductive function of the 
microsomal drug-metabolizing system (Figure 4). 
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Cytochrome P-450, earlier referred to as the CO-binding pigment, was 
first described by Klingenberg (29), Garfinkel (12), and Omura and 
Sato (44, 45, 46, 47). It is found in abundance not only in hepatic 
microsomes, but also in the microsomes and mitochondria from the 
adrenal cortex where it functions in the hydroxylation of steroids (11, 
48), although not in the oxidation of most drugs. Lesser amounts are 
found in the kidney and intestinal mucosa (37). The presence of 
cytochrome P-450 has also been reported in mitochondria from the 
corpus luteum (67). 

Factors concerning cytochrome P-450 include (35): (1) its spectral 
characteristics; (2) its conversion to cytochrome P-423 by a wide 
variety of compounds, such as phospholipase A, sodium deoxycholate 
and urea; and (3) its concentration in hepatic microsomes, which is 
influenced by various drugs, varies with age and sex, and is reported to 
rise after fasting. Drugs and other foreign compounds bind to hepatic 
cytochrome P-450 to produce different spectra of two general types, 
type I and type II. Type I compounds give a different spectrum with a 
X max in the general range of 385-390 rnp and A min in the equally 
broad range of 418-427 rnp; the h max and min given by type II 
compounds are 425-435 and 390-405 rnp, respectively (54). Thus, with 
opposing X max and h min, type I and type II spectra are approximate 
mirror images of each other. Figure 5 presents type I (hexobarbital) 
and type II (aniline) spectra. 

Compounds that induce microsomal drug metabolism tend to be type 
I compounds, such as aminopyrine, 3,4 benzpyrene, coumarin, DDT, 
ethylmorphine, hexobarbital, and progesterone; one exception is 
nicotine, a type II compound, which is reported to be an inducing 
agent. Mannering (35) presents a thorough discussion of the signifi- 
cance of the binding of cytochrome P-450 to compounds. 

Cytochrome PI-450 (P-448, P-446, High Spin P-450, Type a P- 
450) 
The mechanism by which phenobarbital and many other drugs 
stimulate the synthesis of the microsomal drug metabolizing system 
has long been considered to be different from the mechanism whereby 
PAHs produce their inductive effects (36). This early assumption was 
based on the knowledge that drugs such as phenobarbital induce the 
increased metabolism of a much larger number of drugs and other 
foreign substances than do the PAHs such as 3methylcholanthrene (3- 
MC) or 3,libenzpyrene (BP). Attempts to measure some of the 
differences between the two inductive processes led to the conclusion 
that PAHs cause the synthesis of a modified cytochrome P-450. For 
lack of a more suitable nomenclature for the microsomal hemoproteins, 
the hemoprotein cytochrome was named P1-450 (37,55,59,/N, 61). 
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FIGURE 5.-Type I and type II binding spectra given by different 
concentrations of typical type I and type II compounds (hexobarbital, 
type I; aniline, type II) 

soURcE: blannering. G. (85). 
Because Alvares, et al. (1) observed a h max at 448 rnp, cytochrome 

P1450 is sometimes called cytochrome P-448. 
Although it is agreed that the administration of PAHs affect 

microsomal hemoprotein, there is much controversy as to whether the 
change reflects the formation or revelation of a new molecular species 
of hemoprotein, or is simply an alteration in the relative amounts of 
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